Suppr超能文献

使用深度学习和真实数据增强技术从CTA扫描中进行三维肺动脉分割

3D Pulmonary Artery Segmentation from CTA Scans Using Deep Learning with Realistic Data Augmentation.

作者信息

Román Karen López-Linares, de La Bruere Isaac, Onieva Jorge, Andresen Lasse, Holsting Jakob Qvortrup, Rahaghi Farbod N, Macía Iván, González Ballester Miguel A, José Estepar Raúl San

机构信息

Vicomtech Foundation and Biodonostia, San Sebastián, Spain.

BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain.

出版信息

Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:225-237. doi: 10.1007/978-3-030-00946-5_23. Epub 2018 Sep 13.

Abstract

The characterization of the vasculature in the mediastinum, more specifically the pulmonary artery, is of vital importance for the evaluation of several pulmonary vascular diseases. Thus, the goal of this study is to automatically segment the pulmonary artery (PA) from computed tomography angiography images, which opens up the opportunity for more complex analysis of the evolution of the PA geometry in health and disease and can be used in complex fluid mechanics models or individualized medicine. For that purpose, a new 3D convolutional neural network architecture is proposed, which is trained on images coming from different patient cohorts. The network makes use a strong data augmentation paradigm based on realistic deformations generated by applying principal component analysis to the deformation fields obtained from the affine registration of several datasets. The network is validated on 91 datasets by comparing the automatic segmentations with semi-automatically delineated ground truths in terms of mean Dice and Jaccard coefficients and mean distance between surfaces, which yields values of 0.89, 0.80 and 1.25 mm, respectively. Finally, a comparison against a Unet architecture is also included.

摘要

纵隔血管系统,更具体地说是肺动脉的特征描述,对于多种肺血管疾病的评估至关重要。因此,本研究的目标是从计算机断层扫描血管造影图像中自动分割出肺动脉(PA),这为更复杂地分析健康和疾病状态下PA几何形状的演变提供了机会,并且可用于复杂的流体力学模型或个性化医疗。为此,提出了一种新的3D卷积神经网络架构,该架构在来自不同患者队列的图像上进行训练。该网络利用了一种强大的数据增强范式,该范式基于对多个数据集的仿射配准获得的变形场应用主成分分析生成的逼真变形。通过将自动分割结果与半自动描绘的地面真值在平均骰子系数、杰卡德系数和表面之间的平均距离方面进行比较,在91个数据集上对该网络进行了验证,其结果分别为0.89、0.80和1.25毫米。最后,还包括了与Unet架构的比较。

相似文献

1
3D Pulmonary Artery Segmentation from CTA Scans Using Deep Learning with Realistic Data Augmentation.使用深度学习和真实数据增强技术从CTA扫描中进行三维肺动脉分割
Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:225-237. doi: 10.1007/978-3-030-00946-5_23. Epub 2018 Sep 13.
5
Abdominal Aortic Aneurysm Segmentation Using Convolutional Neural Networks Trained with Images Generated with a Synthetic Shape Model.使用基于合成形状模型生成的图像训练的卷积神经网络进行腹主动脉瘤分割
Mach Learn Med Eng Cardiovasc Health Intravasc Imaging Comput Assist Stenting (2019). 2019;11794:167-174. doi: 10.1007/978-3-030-33327-0_20. Epub 2019 Oct 12.

引用本文的文献

5
Abdominal Aortic Aneurysm Segmentation Using Convolutional Neural Networks Trained with Images Generated with a Synthetic Shape Model.使用基于合成形状模型生成的图像训练的卷积神经网络进行腹主动脉瘤分割
Mach Learn Med Eng Cardiovasc Health Intravasc Imaging Comput Assist Stenting (2019). 2019;11794:167-174. doi: 10.1007/978-3-030-33327-0_20. Epub 2019 Oct 12.
6
A SR-NET 3D-TO-2D ARCHITECTURE FOR PARASEPTAL EMPHYSEMA SEGMENTATION.一种用于肺间隔旁肺气肿分割的SR-NET 3D到2D架构。
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:303-306. doi: 10.1109/isbi.2019.8759184. Epub 2019 Jul 11.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验