Suppr超能文献

基于多图谱融合的脑功能连接分析。

Brain functional connectivity analysis based on multi-graph fusion.

机构信息

Center for Future Media and School of Computer Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; School of natural and Computational Science, Massey University Auckland Campus, Auckland 0745, New Zealand.

Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science and School of Psychology, South China Normal University, Guangzhou 510631, China.

出版信息

Med Image Anal. 2021 Jul;71:102057. doi: 10.1016/j.media.2021.102057. Epub 2021 Apr 9.

Abstract

In this paper, we propose a framework for functional connectivity network (FCN) analysis, which conducts the brain disease diagnosis on the resting state functional magnetic resonance imaging (rs-fMRI) data, aiming at reducing the influence of the noise, the inter-subject variability, and the heterogeneity across subjects. To this end, our proposed framework investigates a multi-graph fusion method to explore both the common and the complementary information between two FCNs, i.e., a fully-connected FCN and a 1 nearest neighbor (1NN) FCN, whereas previous methods only focus on conducting FCN analysis from a single FCN. Specifically, our framework first conducts the graph fusion to produce the representation of the rs-fMRI data with high discriminative ability, and then employs the L1SVM to jointly conduct brain region selection and disease diagnosis. We further evaluate the effectiveness of the proposed framework on various data sets of the neuro-diseases, i.e., Fronto-Temporal Dementia (FTD), Obsessive-Compulsive Disorder (OCD), and Alzheimers Disease (AD). The experimental results demonstrate that the proposed framework achieves the best diagnosis performance via selecting reasonable brain regions for the classification tasks, compared to state-of-the-art FCN analysis methods.

摘要

在本文中,我们提出了一种功能连接网络(FCN)分析框架,该框架对静息态功能磁共振成像(rs-fMRI)数据进行脑疾病诊断,旨在减少噪声、受试者间变异性和受试者间异质性的影响。为此,我们提出的框架研究了一种多图融合方法,以探索两个 FCN(即完全连接的 FCN 和 1 最近邻(1NN)FCN)之间的共同和互补信息,而以前的方法仅专注于从单个 FCN 进行 FCN 分析。具体来说,我们的框架首先进行图融合,以产生具有高判别能力的 rs-fMRI 数据表示,然后使用 L1SVM 联合进行脑区选择和疾病诊断。我们进一步在各种神经疾病数据集(即额颞痴呆(FTD)、强迫症(OCD)和阿尔茨海默病(AD))上评估所提出框架的有效性。实验结果表明,与最先进的 FCN 分析方法相比,通过为分类任务选择合理的脑区,所提出的框架实现了最佳的诊断性能。

相似文献

1
Brain functional connectivity analysis based on multi-graph fusion.基于多图谱融合的脑功能连接分析。
Med Image Anal. 2021 Jul;71:102057. doi: 10.1016/j.media.2021.102057. Epub 2021 Apr 9.
10
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.

引用本文的文献

3
Leveraging Brain Modularity Prior for Interpretable Representation Learning of fMRI.利用大脑模块先验进行 fMRI 的可解释表示学习。
IEEE Trans Biomed Eng. 2024 Aug;71(8):2391-2401. doi: 10.1109/TBME.2024.3370415. Epub 2024 Jul 18.

本文引用的文献

2
L2RM: Low-rank Linear Regression Models for High-dimensional Matrix Responses.L2RM:用于高维矩阵响应的低秩线性回归模型
J Am Stat Assoc. 2020 Apr 30;115(529):403-424. doi: 10.1080/01621459.2018.1555092. Epub 2019 Apr 30.
5
Half-Quadratic Minimization for Unsupervised Feature Selection on Incomplete Data.用于不完整数据上无监督特征选择的半二次最小化
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3122-3135. doi: 10.1109/TNNLS.2020.3009632. Epub 2021 Jul 6.
6
Multiple functional connectivity networks fusion for schizophrenia diagnosis.多模态功能连接网络融合用于精神分裂症诊断。
Med Biol Eng Comput. 2020 Aug;58(8):1779-1790. doi: 10.1007/s11517-020-02193-x. Epub 2020 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验