Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Cra. 1, 18A-12, 111711, Bogotá, Colombia.
Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
Nucleic Acids Res. 2020 Jul 27;48(13):7333-7344. doi: 10.1093/nar/gkaa466.
Neutrophils release their intracellular content, DNA included, into the bloodstream to form neutrophil extracellular traps (NETs) that confine and kill circulating pathogens. The mechanosensitive adhesive blood protein, von Willebrand Factor (vWF), interacts with the extracellular DNA of NETs to potentially immobilize them during inflammatory and coagulatory conditions. Here, we elucidate the previously unknown molecular mechanism governing the DNA-vWF interaction by integrating atomistic, coarse-grained, and Brownian dynamics simulations, with thermophoresis, gel electrophoresis, fluorescence correlation spectroscopy (FCS), and microfluidic experiments. We demonstrate that, independently of its nucleotide sequence, double-stranded DNA binds to a specific helix of the vWF A1 domain, via three arginines. This interaction is attenuated by increasing the ionic strength. Our FCS and microfluidic measurements also highlight the key role shear-stress has in enabling this interaction. Our simulations attribute the previously-observed platelet-recruitment reduction and heparin-size modulation, upon establishment of DNA-vWF interactions, to indirect steric hindrance and partial overlap of the binding sites, respectively. Overall, we suggest electrostatics-guiding DNA to a specific protein binding site-as the main driving force defining DNA-vWF recognition. The molecular picture of a key shear-mediated DNA-protein interaction is provided here and it constitutes the basis for understanding NETs-mediated immune and hemostatic responses.
中性粒细胞将其细胞内物质(包括 DNA)释放到血液中,形成中性粒细胞胞外诱捕网(NETs),以限制和杀死循环中的病原体。机械敏感的黏附性血液蛋白,血管性血友病因子(vWF),与 NETs 的细胞外 DNA 相互作用,以在炎症和凝血条件下潜在地固定它们。在这里,我们通过整合原子、粗粒和布朗动力学模拟,与趋光性、凝胶电泳、荧光相关光谱(FCS)和微流控实验,阐明了以前未知的控制 DNA-vWF 相互作用的分子机制。我们证明,无论其核苷酸序列如何,双链 DNA 都通过三个精氨酸与 vWF A1 结构域的特定螺旋结合。这种相互作用会因离子强度的增加而减弱。我们的 FCS 和微流控测量还突出了剪切力在实现这种相互作用中的关键作用。我们的模拟表明,在建立 DNA-vWF 相互作用后,血小板募集减少和肝素大小调节,归因于间接的空间位阻和结合位点的部分重叠。总的来说,我们认为静电引导 DNA 到特定的蛋白质结合位点,是定义 DNA-vWF 识别的主要驱动力。这里提供了一个关键的剪切介导的 DNA-蛋白质相互作用的分子图像,为理解 NETs 介导的免疫和止血反应提供了基础。