Suppr超能文献

氯霉素处理期间大肠杆菌B/r中核糖体核糖核酸链的延伸速率

Rate of ribosomal ribonucleic acid chain elongation in Escherichia coli B/r during chloramphenicol treatment.

作者信息

Shen V, Bremer H

出版信息

J Bacteriol. 1977 Jun;130(3):1109-16. doi: 10.1128/jb.130.3.1109-1116.1977.

Abstract

In Escherichia coli B/r growing in glucose-amino acids medium, the radioactive labeling of 5S ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) was measured after the simultaneous addition to the bacteria of chloramphenicol (CAM) (100 mug/ml), rifampin (200 mug/ml), and radioactive uracil. Accumulation of 5S rRNA ceased 85 s after the addition of rifampin, independent of the presence or absence of CAM; this indicates that CAM did not affect the rRNA chain growth rate. Together with previous measurements of the synthesis of rRNA and messenger RNA under these conditions, the results imply that CAM caused a redistribution of RNA polymerase which greatly favored stable RNA synthesis (77 to 97% of total functioning RNA polymerase engaged in synthesis of rRNA and tRNA). Further, it is inferred that RNA polymerase molecules were activated that were inactive during exponential growth. The labeling of tRNA observed under these conditions suggests the existence of clusters of tRNA genes at the 3' end of long transcripts that resemble the rRNA precursor in length and response to CAM and may be parts of rRNA transcripts.

摘要

在葡萄糖 - 氨基酸培养基中生长的大肠杆菌B/r中,在向细菌同时添加氯霉素(CAM)(100μg/ml)、利福平(200μg/ml)和放射性尿嘧啶后,测定了5S核糖体核糖核酸(rRNA)和转运RNA(tRNA)的放射性标记。添加利福平85秒后,5S rRNA的积累停止,这与CAM的存在与否无关;这表明CAM不影响rRNA链的生长速率。结合之前在这些条件下对rRNA和信使RNA合成的测量结果,结果表明CAM导致了RNA聚合酶的重新分布,极大地有利于稳定RNA的合成(77%至97%的总功能性RNA聚合酶参与rRNA和tRNA的合成)。此外,据推测,在指数生长期间无活性的RNA聚合酶分子被激活。在这些条件下观察到的tRNA标记表明,在长转录本的3'端存在tRNA基因簇,其长度和对CAM的反应类似于rRNA前体,可能是rRNA转录本的一部分。

相似文献

1
Rate of ribosomal ribonucleic acid chain elongation in Escherichia coli B/r during chloramphenicol treatment.
J Bacteriol. 1977 Jun;130(3):1109-16. doi: 10.1128/jb.130.3.1109-1116.1977.
5
Inhibition of ribonucleic acid synthesis by nalidixic acid in Escherichia coli.
J Bacteriol. 1974 Oct;120(1):282-6. doi: 10.1128/jb.120.1.282-286.1974.
7
Chloramphenicol and the stimulation of ribonucleic acid synthesis in Escherichia coli.
J Bacteriol. 1969 May;98(2):587-92. doi: 10.1128/jb.98.2.587-592.1969.
8
Temperature dependence of RNA synthesis parameters in Escherichia coli.
J Bacteriol. 1982 Aug;151(2):879-87. doi: 10.1128/jb.151.2.879-887.1982.

引用本文的文献

1
Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries.
EMBO J. 2016 Jul 15;35(14):1582-95. doi: 10.15252/embj.201593561. Epub 2016 Jun 10.
2
When Too Much ATP Is Bad for Protein Synthesis.
J Mol Biol. 2015 Aug 14;427(16):2586-2594. doi: 10.1016/j.jmb.2015.06.021. Epub 2015 Jul 4.
3
Control of rRNA synthesis in Escherichia coli: a systems biology approach.
Microbiol Mol Biol Rev. 2004 Dec;68(4):639-68. doi: 10.1128/MMBR.68.4.639-668.2004.
4
Control of RNA synthesis in Escherichia coli after a shift to higher temperature.
J Bacteriol. 1982 Sep;151(3):1425-32. doi: 10.1128/jb.151.3.1425-1432.1982.
5
Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate.
J Bacteriol. 1982 Sep;151(3):1261-8. doi: 10.1128/jb.151.3.1261-1268.1982.
6
Temperature dependence of RNA synthesis parameters in Escherichia coli.
J Bacteriol. 1982 Aug;151(2):879-87. doi: 10.1128/jb.151.2.879-887.1982.
7
relA-dependent RNA polymerase activity in Escherichia coli.
J Bacteriol. 1982 Apr;150(1):168-79. doi: 10.1128/jb.150.1.168-179.1982.
8
Synthesis and activity of ribonucleic acid polymerase in Escherichia coli.
J Bacteriol. 1980 Mar;141(3):1098-108. doi: 10.1128/jb.141.3.1098-1108.1980.
9
Effect of DNA gyrase inactivation on RNA synthesis in Escherichia coli.
J Bacteriol. 1985 Apr;162(1):458-60. doi: 10.1128/jb.162.1.458-460.1985.
10
Effect of relA function on the replication of plasmid pBR322 in Escherichia coli.
Mol Gen Genet. 1986 Apr;203(1):150-3. doi: 10.1007/BF00330396.

本文引用的文献

1
Regulation of ribosomal and transfer RNA synthesis.
J Mol Biol. 1962 Mar;4:193-210. doi: 10.1016/s0022-2836(62)80051-5.
2
Metabolic instability of the ribonucleic acid synthesized by Escherichia coli in the presence of chloromycetin.
Biochim Biophys Acta. 1957 Sep;25(3):513-20. doi: 10.1016/0006-3002(57)90521-8.
3
Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis.
Biochemistry. 1967 Jun;6(6):1818-27. doi: 10.1021/bi00858a033.
4
A direct demonstration of the metabolic turnover of chloramphenicol RNA.
Biochim Biophys Acta. 1965 Jun 8;103(2):355-8. doi: 10.1016/0005-2787(65)90180-2.
5
Effect of chloramphenicol on the synthesis and stability of ribonucleic acid in Bacillus subtilis.
J Bacteriol. 1968 Apr;95(4):1212-20. doi: 10.1128/jb.95.4.1212-1220.1968.
6
RNA chain growth-rate in Escherichia coli.
J Mol Biol. 1968 Dec 14;38(2):163-80. doi: 10.1016/0022-2836(68)90404-x.
8
RNA chain growth rates in Escherichia coli.
J Mol Biol. 1969 Jan 14;39(1):1-29. doi: 10.1016/0022-2836(69)90329-5.
10
Ribosomal RNA chain growth rate and RNA labeling patterns in Escherichia coli B-r.
J Theor Biol. 1974 Jun;45(2):379-403. doi: 10.1016/0022-5193(74)90120-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验