Suppr超能文献

利用机器学习方法和多光谱特征提高黑土资源制图的模型性能。

Improving model performance in mapping black-soil resource with machine learning methods and multispectral features.

作者信息

Hu Jianfang, Tang Yulei, Yan Jiapan, Zhang Jiahong, Zhao Yuxin, Chen Zhansheng

机构信息

Center for Geophysical Survey, China Geological Survey, Langfang, 065000, China.

Technology Innovation Center for Earth Near Surface Detection, China Geological Survey, Langfang, 065000, China.

出版信息

Sci Rep. 2025 Jan 7;15(1):1199. doi: 10.1038/s41598-024-82399-3.

Abstract

Accurate information on the distribution of regional black-soil resource is one of the important elements for the sustainable management of soils. And its results can provide decision makers with robust data that can be translated into better decision making. This study utilized all Sentinel-2 images covering the study area from April to July in 2022. After masking clouds, all images were synthesized monthly. Based on the revised random forest classification algorithm, model performance using different feature combination programs were evaluated to search for an efficient, high-precision method for mapping black-soil resource. The impact on model performance of adding data from temperature, precipitation and slope geographic covariates was analyzed. And the robustness of the model was verified using Landsat-8 data with lower spatial resolution. The results showed that (1) the model based on multi-temporal ensemble features for mapping black-soil resource shows the best performance, with an OA of 94.6%; (2) adding temperature covariate can effectively improve the accuracy of black-soil resource mapping; (3) compared to the sentinel data, the performance of the model based on Landsat-8 data is reduced but still plausible, verifying the robustness of the model. This study provides a robust method to improve model performance for rapid mapping of black-soil resource.

摘要

准确的区域黑土资源分布信息是土壤可持续管理的重要要素之一。其结果可为决策者提供可靠数据,进而转化为更好的决策。本研究利用了2022年4月至7月覆盖研究区域的所有哨兵-2影像。在掩膜云之后,所有影像按月进行合成。基于改进的随机森林分类算法,评估了使用不同特征组合方案的模型性能,以寻找一种高效、高精度的黑土资源制图方法。分析了添加温度、降水和坡度地理协变量数据对模型性能的影响。并使用空间分辨率较低的陆地卫星-8数据验证了模型的稳健性。结果表明:(1)基于多时相集合特征的黑土资源制图模型性能最佳,总体精度为94.6%;(2)添加温度协变量可有效提高黑土资源制图精度;(3)与哨兵数据相比,基于陆地卫星-8数据的模型性能有所降低,但仍合理,验证了模型的稳健性。本研究提供了一种提高模型性能以快速制图黑土资源的稳健方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c11/11706945/bbcdf3a48251/41598_2024_82399_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验