Baig Umair, Khan Abuzar, Gondal Mohammad A, Dastageer Mohamed A, Falath Wail S
Center of Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Nanomaterials (Basel). 2020 Jun 2;10(6):1098. doi: 10.3390/nano10061098.
A visible-light-active nickel oxide-graphitic carbon nitride (NiO@g-CN) hetero-structured nanocomposite was synthesized for the first time by pulsed laser ablation in liquid and used as a photoanode material in photoelectrochemical water-splitting reaction with a solar simulator. It was found that the photoelectrochemical performance of PLAL synthesized NiO@g-CN nanocomposite as photoanode, compared to g-CN as photoanode showed fourfold enhancements in photocurrent density under visible light. FT-IR, XRD, FE-SEM, and EDX consistently showed the proper anchoring of nano-sized NiO on g-CN. UV-DRS and the band gap estimation showed the narrowing down of the band gap energy and consequent enhancement in the visible-light absorption, whereas photoluminescence spectroscopy confirmed the reduction of the recombination of photo-excited electron hole pairs as a result of the anchoring of NiO on g-CN. The photoelectrochemical performance of g-CN and the NiO@g-CN nanocomposite photoanodes was compared by linear sweep voltammetry (LSV), Chronoamperometry (I-t), and Electrochemical Impedance Spectroscopy (EIS). All of these results of the characterization studies account for the observed fourfold enhancement of photocurrent density of NiO@g-CN nanocomposite as photoanode in the photoelectrochemical reaction.
首次通过液相脉冲激光烧蚀合成了一种可见光活性氧化镍-石墨相氮化碳(NiO@g-CN)异质结构纳米复合材料,并将其用作太阳能模拟器光电化学水分解反应中的光阳极材料。研究发现,与以g-CN作为光阳极相比,脉冲激光烧蚀法(PLAL)合成的NiO@g-CN纳米复合材料作为光阳极时,在可见光下光电流密度提高了四倍。傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和能谱分析(EDX)一致表明纳米级NiO在g-CN上实现了良好的锚定。紫外可见漫反射光谱(UV-DRS)和带隙估计表明带隙能量变窄,可见光吸收增强,而光致发光光谱证实由于NiO锚定在g-CN上,光激发电子空穴对的复合减少。通过线性扫描伏安法(LSV)、计时电流法(I-t)和电化学阻抗谱(EIS)比较了g-CN和NiO@g-CN纳米复合材料光阳极的光电化学性能。表征研究的所有这些结果都解释了在光电化学反应中观察到的NiO@g-CN纳米复合材料作为光阳极时光电流密度提高四倍的现象。