Lobo Benjamin, Abdel-Rahman Emaad, Brown Donald, Dunn Lori, Bowman Brendan
Department of Systems & Information Engineering, University of Virginia, Charlottesville, VA 22904, United States.
Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA 22908, United States.
Artif Intell Med. 2020 Apr;104:101823. doi: 10.1016/j.artmed.2020.101823. Epub 2020 Feb 19.
The most severe form of kidney disease, End-Stage Renal Disease (ESRD) is treated with various forms of dialysis - artificial blood cleansing. Dialysis patients suffer many health burdens including high mortality and hospitalization rates, and symptomatic anemia: a low red blood cell count as indicated by a low hemoglobin (Hgb) level. ESRD-induced anemia is treated, with variable patient response, by erythropoiesis stimulating agents (ESAs): expensive injectable medications typically administered during dialysis sessions. The dosing protocol is typically a population level protocol based on original clinical trials, the use of which often results in Hgb cycling. This cycling phenomenon occurs primarily due to the mismatch in the time between dosing decisions and the time it takes for the effects of a dosing change to be fully realized. In this paper we develop a recurrent neural network approach that uses historic data together with future ESA and iron dosing data to predict the 1, 2, and 3 month Hgb levels of patients with ESRD-induced anemia. The results of extensive experimentation indicate that this approach generates predictions that are clinically relevant: the mean absolute error of the predictions is comparable to estimates of the intra-individual variability of the laboratory test for Hgb.
终末期肾病(ESRD)是最严重的肾病形式,通过各种形式的透析——人工血液净化来治疗。透析患者承受着许多健康负担,包括高死亡率和住院率,以及症状性贫血:即血红蛋白(Hgb)水平低所表明的红细胞计数低。由ESRD引起的贫血通过促红细胞生成素(ESA)进行治疗,患者反应各不相同,ESA是一种昂贵的注射药物,通常在透析期间给药。给药方案通常是基于原始临床试验的群体水平方案,其使用常常导致Hgb波动。这种波动现象主要是由于给药决策时间与给药变化效果完全显现所需时间之间的不匹配所致。在本文中,我们开发了一种循环神经网络方法,该方法使用历史数据以及未来的ESA和铁剂给药数据来预测ESRD引起的贫血患者1个月、2个月和3个月后的Hgb水平。大量实验结果表明,这种方法产生的预测具有临床相关性:预测的平均绝对误差与Hgb实验室检测个体内变异性的估计值相当。