Henning Paige M, Shore Joel S, McCubbin Andrew G
School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA.
Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
Plants (Basel). 2020 Jun 3;9(6):713. doi: 10.3390/plants9060713.
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility -locus of a small number of linked -genes specific to short-styled morph genomes. possesses three -genes, namely (controlling pistil characters), and (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of to investigate hypothesized -gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of . In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of . Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting -gene activities intersect with a signaling hub. Interestingly, distinct -genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor () network hubs which mediate red/far-red light signaling. We propose that modification of the activities of hubs by the -locus could be a common theme in the evolution of heterostyly.
花柱异长现象利用不同的雌雄同体花形态来促进异交。不同形态在柱头/花药位置上存在结构差异,以促进异花授粉,并在生理上阻止自花受精。花柱异长现象由一个自交不亲和位点控制,该位点由少数与短花柱形态基因组特异连锁的基因组成。它拥有三个基因,即(控制雌蕊特征)、和(控制雄蕊特征)。在这里,我们比较了的花形态的雌蕊和雄蕊转录组,以研究假设的基因功能,以及激素差异是否可能导致生理不亲和。然后,我们使用网络分析来识别支持花柱异长现象的遗传网络。我们发现短花柱(S)形态雌蕊中油菜素内酯调节基因减少,这与假设的油菜素内酯失活活性一致。在S形态的花药中,生长素调节基因富集,这与假设的生长素生物合成活性一致。相对于长花柱(L)形态的花,在S形态的雌蕊和雄蕊中均发现生长素升高和油菜素内酯减少的证据,这与相互的激素差异导致生理不亲和一致。然而,其他激素途径也受到影响,这表明基因活性与一个信号枢纽相交。有趣的是,来自三个独立进化出花柱异长现象的物种的控制雌蕊长度的不同基因,可能与介导红光/远红光信号的光敏色素相互作用因子()网络枢纽相交。我们提出,位点对枢纽活性的修饰可能是花柱异长现象进化中的一个共同主题。