Suppr超能文献

基于神经网络的矩阵分解预测 circRNA-RBP 相互作用

Matrix factorization with neural network for predicting circRNA-RBP interactions.

机构信息

School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.

College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

出版信息

BMC Bioinformatics. 2020 Jun 5;21(1):229. doi: 10.1186/s12859-020-3514-x.

Abstract

BACKGROUND

Circular RNA (circRNA) has been extensively identified in cells and tissues, and plays crucial roles in human diseases and biological processes. circRNA could act as dynamic scaffolding molecules that modulate protein-protein interactions. The interactions between circRNA and RNA Binding Proteins (RBPs) are also deemed to an essential element underlying the functions of circRNA. Considering cost-heavy and labor-intensive aspects of these biological experimental technologies, instead, the high-throughput experimental data has enabled the large-scale prediction and analysis of circRNA-RBP interactions.

RESULTS

A computational framework is constructed by employing Positive Unlabeled learning (P-U learning) to predict unknown circRNA-RBP interaction pairs with kernel model MFNN (Matrix Factorization with Neural Networks). The neural network is employed to extract the latent factors of circRNA and RBP in the interaction matrix, the P-U learning strategy is applied to alleviate the imbalanced characteristics of data samples and predict unknown interaction pairs. For this purpose, the known circRNA-RBP interaction data samples are collected from the circRNAs in cancer cell lines database (CircRic), and the circRNA-RBP interaction matrix is constructed as the input of the model. The experimental results show that kernel MFNN outperforms the other deep kernel models. Interestingly, it is found that the deeper of hidden layers in neural network framework does not mean the better in our model. Finally, the unlabeled interactions are scored using P-U learning with MFNN kernel, and the predicted interaction pairs are matched to the known interactions database. The results indicate that our method is an effective model to analyze the circRNA-RBP interactions.

CONCLUSION

For a poorly studied circRNA-RBP interactions, we design a prediction framework only based on interaction matrix by employing matrix factorization and neural network. We demonstrate that MFNN achieves higher prediction accuracy, and it is an effective method.

摘要

背景

环状 RNA(circRNA)已在细胞和组织中广泛鉴定,并在人类疾病和生物过程中发挥关键作用。circRNA 可以作为动态支架分子,调节蛋白质-蛋白质相互作用。circRNA 与 RNA 结合蛋白(RBP)之间的相互作用也被认为是 circRNA 功能的基本要素。考虑到这些生物实验技术成本高、劳动强度大,相反,高通量实验数据已经能够大规模预测和分析 circRNA-RBP 相互作用。

结果

采用正无标记学习(P-U 学习)构建了一个计算框架,使用核模型 MFNN(神经网络矩阵分解)预测未知的 circRNA-RBP 相互作用对。神经网络用于提取相互作用矩阵中 circRNA 和 RBP 的潜在因子,P-U 学习策略用于缓解数据样本的不平衡特征并预测未知的相互作用对。为此,从 CircRic 癌细胞系数据库中收集了已知的 circRNA-RBP 相互作用数据样本,并将 circRNA-RBP 相互作用矩阵作为模型的输入。实验结果表明,核 MFNN 优于其他深度核模型。有趣的是,我们发现神经网络框架中的隐藏层越深并不意味着模型越好。最后,使用 MFNN 核的 P-U 学习对未标记的相互作用进行评分,并将预测的相互作用对与已知的相互作用数据库匹配。结果表明,我们的方法是分析 circRNA-RBP 相互作用的有效模型。

结论

对于研究较少的 circRNA-RBP 相互作用,我们仅通过矩阵分解和神经网络设计了一个基于相互作用矩阵的预测框架。我们证明 MFNN 具有更高的预测准确性,是一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a60d/7275382/ec62edf880f6/12859_2020_3514_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验