Suppr超能文献

整合转录组学和目标代谢物分析作为酵母代谢工程设计的新工具

Integrative Transcriptomic and Target Metabolite Analysis as a New Tool for Designing Metabolic Engineering in Yeast.

作者信息

Lopez-Barbera Alejandro, Abasolo Nerea, Torrell Helena, Canela Nuria, Fernández-Arroyo Salvador

机构信息

Centre for Omic Sciences, Eurecat, Centre Tecnològic de Catalunya, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain.

出版信息

Biomolecules. 2024 Nov 30;14(12):1536. doi: 10.3390/biom14121536.

Abstract

Precision fermentation processes, especially when using edited microorganisms, demand accuracy in the bioengineering process to maximize the desired outcome and to avoid adverse effects. The selection of target sites to edit using CRISPR/Cas9 can be complex, resulting in non-controlled consequences. Therefore, the use of multi-omics strategies can help in the design, selection and efficiency of genetic editing. In this study, we present a multi-omics approach based on targeted metabolite analysis and transcriptomics for the designing of CRISPR/Cas9 in baker's yeast as a more efficient strategy to select editing regions. Multi-omics shows potential to reveal new metabolic bottlenecks and to elucidate new metabolic fluxes, which could be a key factor in minimizing the metabolic burden in edited microorganisms. In our model, we focus our attention on the isoprenoid synthesis due to their industrial interest. Targeted metabolite detection combined with a transcriptomic analysis revealed hydroxymethylglutaryl-CoA reductases (HMGs) as the best target gene to induce an increase in isoprenoid synthesis. Thus, an extra copy of was introduced using, for the first time, the synthetic promoter. The multi-omics analysis of the recombinant strain results in an accurate assessment of yeast behavior during the most important growth phases, highlighting the metabolic burden, Crabtree effect or the diauxic shift during culture.

摘要

精准发酵过程,尤其是使用经过编辑的微生物时,要求生物工程过程具备精确性,以实现预期结果的最大化并避免不良影响。使用CRISPR/Cas9进行编辑的靶位点选择可能很复杂,会导致无法控制的后果。因此,多组学策略的应用有助于基因编辑的设计、选择和效率提升。在本研究中,我们提出了一种基于靶向代谢物分析和转录组学的多组学方法,用于在面包酵母中设计CRISPR/Cas9,作为一种选择编辑区域的更有效策略。多组学显示出揭示新的代谢瓶颈和阐明新的代谢通量的潜力,这可能是将编辑后微生物的代谢负担降至最低的关键因素。在我们的模型中,由于类异戊二烯的工业价值,我们将注意力集中在类异戊二烯的合成上。靶向代谢物检测结合转录组分析表明,羟甲基戊二酰辅酶A还原酶(HMGs)是诱导类异戊二烯合成增加的最佳靶基因。因此,首次使用合成启动子引入了一个额外的 拷贝。对重组菌株的多组学分析能够准确评估酵母在最重要生长阶段的行为,突出培养过程中的代谢负担、 Crabtree效应或二次生长转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/140c/11673430/e0b385657ad6/biomolecules-14-01536-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验