Suppr超能文献

由纳米晶体量子点组装而成的半导体中的电荷传输。

Charge transport in semiconductors assembled from nanocrystal quantum dots.

作者信息

Yazdani Nuri, Andermatt Samuel, Yarema Maksym, Farto Vasco, Bani-Hashemian Mohammad Hossein, Volk Sebastian, Lin Weyde M M, Yarema Olesya, Luisier Mathieu, Wood Vanessa

机构信息

Materials and Device Engineering Group, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland.

Nano TCAD Group, Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland.

出版信息

Nat Commun. 2020 Jun 5;11(1):2852. doi: 10.1038/s41467-020-16560-7.

Abstract

The potential of semiconductors assembled from nanocrystals has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectrics, and phase change memory cells. Despite the commercial success of nanocrystal quantum dots as optical absorbers and emitters, applications involving charge transport through nanocrystal semiconductors have eluded exploitation due to the inability to predictively control their electronic properties. Here, we perform large-scale, ab initio simulations to understand carrier transport, generation, and trapping in strongly confined nanocrystal quantum dot-based semiconductors from first principles. We use these findings to build a predictive model for charge transport in these materials, which we validate experimentally. Our insights provide a path for systematic engineering of these semiconductors, which in fact offer previously unexplored opportunities for tunability not achievable in other semiconductor systems.

摘要

由纳米晶体组装而成的半导体在包括晶体管、发光二极管、太阳能电池、光电探测器、热电材料和相变存储单元在内的众多电子和光电器件中展现出了潜力。尽管纳米晶体量子点作为光吸收体和发光体已取得商业成功,但由于无法预测性地控制其电子特性,涉及通过纳米晶体半导体进行电荷传输的应用尚未得到开发。在此,我们进行大规模的从头算模拟,从第一性原理出发来理解强受限的基于纳米晶体量子点的半导体中的载流子传输、产生和俘获。我们利用这些发现建立了这些材料中电荷传输的预测模型,并通过实验进行了验证。我们的见解为这些半导体的系统工程提供了一条途径,事实上,这些半导体提供了其他半导体系统无法实现的前所未有的可调谐性机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89cd/7275058/035ce7e38661/41467_2020_16560_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验