Suppr超能文献

可解释的深度学习识别淡水有害藻华的模式和驱动因素。

Explainable deep learning identifies patterns and drivers of freshwater harmful algal blooms.

作者信息

Chen Shengyue, Huang Jinliang, Huang Jiacong, Wang Peng, Sun Changyang, Zhang Zhenyu, Jiang Shijie

机构信息

Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.

Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, 07745, Germany.

出版信息

Environ Sci Ecotechnol. 2024 Dec 27;23:100522. doi: 10.1016/j.ese.2024.100522. eCollection 2025 Jan.

Abstract

The escalating magnitude, frequency, and duration of harmful algal blooms (HABs) pose significant challenges to freshwater ecosystems worldwide. However, the mechanisms driving HABs remain poorly understood, in part due to the strong regional specificity of algal processes and the uneven data availability. These complexities make it difficult to generalize HAB dynamics and effectively predict their occurrence using traditional models. To address these challenges, we developed an explainable deep learning approach using long short-term memory (LSTM) models combined with explanation techniques that can capture complex patterns and provide explainable insights into key HAB drivers. We applied this approach for algal density modeling at 102 sites in China's lakes and reservoirs over three years. LSTMs effectively captured daily algal dynamics, achieving mean and maximum Nash-Sutcliffe efficiency coefficients of 0.48 and 0.95 during testing phase. Moreover, water temperature emerged as the primary driver of HABs both nationally and in over 30% of localities, with stronger water temperature sensitivity observed in mid-to low-latitudes. We also identified regional similarities that allow for the successful transferability in modeling algal dynamics. Specifically, using fine-tuned transfer learning, we improved the prediction accuracy in over 75% of poorly gauged areas. Overall, LSTM-based explainable deep learning approach effectively addresses key challenges in HAB modeling by tackling both regional specificity and data limitations. By accurately predicting algal dynamics and identifying critical drivers, this approach provides actionable insights into the mechanisms of HABs, ultimately aids in the implementation of effective mitigation measures for nationwide and regional freshwater ecosystems.

摘要

有害藻华(HABs)规模、频率和持续时间的不断升级给全球淡水生态系统带来了重大挑战。然而,驱动有害藻华的机制仍未得到充分理解,部分原因是藻类过程具有很强的区域特异性以及数据可用性不均衡。这些复杂性使得难以概括有害藻华动态,并难以使用传统模型有效预测其发生。为应对这些挑战,我们开发了一种可解释的深度学习方法,使用长短期记忆(LSTM)模型并结合解释技术,该技术能够捕捉复杂模式,并对有害藻华的关键驱动因素提供可解释的见解。我们将此方法应用于中国湖泊和水库102个站点三年的藻类密度建模。长短期记忆网络有效地捕捉了每日藻类动态,在测试阶段平均和最大纳什-萨特克利夫效率系数分别达到0.48和0.95。此外,水温在全国范围内以及超过30%的地区成为有害藻华的主要驱动因素,在中低纬度地区观察到更强的水温敏感性。我们还确定了区域相似性,这使得在藻类动态建模中能够成功进行可转移性分析。具体而言,通过微调迁移学习,我们在超过75%的监测不足地区提高了预测准确性。总体而言,基于长短期记忆网络的可解释深度学习方法通过应对区域特异性和数据限制,有效地解决了有害藻华建模中的关键挑战。通过准确预测藻类动态并确定关键驱动因素,该方法为有害藻华的机制提供了可操作的见解,最终有助于在全国和区域淡水生态系统中实施有效的缓解措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab03/11786749/2bbe35b7efeb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验