ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.
ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Max Planck Institute, Max-Planck-Ring 4, 72076, Tübingen, Germany.
Neural Netw. 2020 Sep;129:109-122. doi: 10.1016/j.neunet.2020.04.007. Epub 2020 Apr 21.
Currently, usual approaches for fast robot control are largely reliant on solving online optimal control problems. Such methods are known to be computationally intensive and sensitive to model accuracy. On the other hand, animals plan complex motor actions not only fast but seemingly with little effort even on unseen tasks. This natural sense to infer temporal dynamics and coordination motivates us to approach robot control from a motor skill learning perspective to design fast and computationally light controllers that can be learned autonomously by the robot under mild modeling assumptions. This article introduces Phase Portrait Movement Primitives (PPMP), a primitive that predicts dynamics on a low dimensional phase space which in turn is used to govern the high dimensional kinematics of the task. The stark difference with other primitive formulations is a built-in mechanism for phase prediction in the form of coupled oscillators that replaces model-based state estimators such as Kalman filters. The policy is trained by optimizing the parameters of the oscillators whose output is connected to a kinematic distribution in the form of a phase portrait. The drastic reduction in dimensionality allows us to efficiently train and execute PPMPs on a real human-sized, dual-arm humanoid upper body on a task involving 20 degrees-of-freedom. We demonstrate PPMPs in interactions requiring fast reactions times while generating anticipative pose adaptation in both discrete and cyclic tasks.
目前,快速机器人控制的常用方法在很大程度上依赖于在线最优控制问题的求解。众所周知,这些方法计算量很大,对模型精度也很敏感。另一方面,动物不仅能快速规划复杂的运动动作,而且在面对未知任务时,似乎也不费吹灰之力。这种推断时间动态和协调的自然能力促使我们从运动技能学习的角度来研究机器人控制,以设计快速且计算量低的控制器,这些控制器可以在温和的建模假设下,由机器人自主学习。本文介绍了相图运动基元(PPMP),这是一种可以在低维相空间中预测动态的基元,进而用于控制任务的高维运动学。与其他基元公式的显著区别在于,它内置了一种以耦合振荡器形式表示的相位预测机制,取代了基于模型的状态估计器,如卡尔曼滤波器。该策略通过优化振荡器的参数进行训练,振荡器的输出与相图形式的运动学分布相连。维度的大幅降低使我们能够在涉及 20 个自由度的任务中,高效地在真实的人类大小的双臂人形上身机器人上训练和执行 PPMP。我们展示了在需要快速反应时间的交互中使用 PPMP,并在离散和循环任务中生成预期的姿势自适应。