Suppr超能文献

结合红外光谱和“数字干燥”快速分析液态人血清中的疾病状态。

Rapid analysis of disease state in liquid human serum combining infrared spectroscopy and "digital drying".

机构信息

WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK.

Neuropathology, Lancashire Teaching Hospitals NHS Trust, Royal Preston Hospital, Preston, UK.

出版信息

J Biophotonics. 2020 Sep;13(9):e202000118. doi: 10.1002/jbio.202000118. Epub 2020 Jun 23.

Abstract

In recent years, the diagnosis of brain tumors has been investigated with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy on dried human serum samples to eliminate spectral interferences of the water component, with promising results. This research evaluates ATR-FTIR on both liquid and air-dried samples to investigate "digital drying" as an alternative approach for the analysis of spectra obtained from liquid samples. Digital drying approaches, consisting of water subtraction and least-squares method, have demonstrated a greater random forest (RF) classification performance than the air-dried spectra approach when discriminating cancer vs control samples, reaching sensitivity values higher than 93.0% and specificity values higher than 83.0%. Moreover, quantum cascade laser infrared (QCL-IR) based spectroscopic imaging is utilized on liquid samples to assess the implications of a deep-penetration light source on disease classification. The RF classification of QCL-IR data has provided sensitivity and specificity amounting to 85.1% and 75.3% respectively.

摘要

近年来,人们研究了利用衰减全反射傅里叶变换红外光谱(ATR-FTIR)对干燥的人血清样本进行脑肿瘤诊断,以消除水成分的光谱干扰,取得了有前景的结果。本研究评估了ATR-FTIR 在液体和风干样本上的应用,以研究“数字干燥”作为分析液体样本光谱的替代方法。数字干燥方法,包括水扣除和最小二乘法,在区分癌症与对照样本时,与风干光谱方法相比,表现出更高的随机森林(RF)分类性能,达到了高于 93.0%的灵敏度值和高于 83.0%的特异性值。此外,利用基于量子级联激光红外(QCL-IR)的光谱成像技术对液体样本进行评估,以研究深穿透光源对疾病分类的影响。RF 对 QCL-IR 数据的分类提供了 85.1%和 75.3%的灵敏度和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验