Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Dept. Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Integr Biol (Camb). 2020 Jun 19;12(6):139-149. doi: 10.1093/intbio/zyaa010.
Glioblastoma (GBM) is the most common primary malignant brain tumor. The tissue microenvironment adjacent to vasculature, termed the perivascular niche, has been implicated in promoting biological processes involved in glioblastoma progression such as invasion, proliferation, and therapeutic resistance. However, the exact nature of the cues that support tumor cell aggression in this niche is largely unknown. Soluble angiocrine factors secreted by tumor-associated vasculature have been shown to support such behaviors in other cancer types. Here, we exploit macroscopic and microfluidic gelatin hydrogel platforms to profile angiocrine factors secreted by self-assembled endothelial networks and evaluate their relevance to glioblastoma biology. Aggregate angiocrine factors support increases in U87-MG cell number, migration, and therapeutic resistance to temozolomide. We also identify a novel role for TIMP1 in facilitating glioblastoma tumor cell migration. Overall, this work highlights the use of multidimensional hydrogel models to evaluate the role of angiocrine signals in glioblastoma progression.
胶质母细胞瘤(GBM)是最常见的原发性恶性脑肿瘤。与脉管系统相邻的组织微环境,称为血管周龛,被认为在促进胶质母细胞瘤进展所涉及的生物学过程中发挥作用,如侵袭、增殖和治疗抵抗。然而,支持肿瘤细胞在这种龛位中侵袭的的确切信号在很大程度上尚不清楚。肿瘤相关脉管系统分泌的可溶性血管生成因子已被证明在其他癌症类型中支持这些行为。在这里,我们利用宏观和微流控明胶水凝胶平台来分析自组装的内皮网络分泌的血管生成因子,并评估它们与胶质母细胞瘤生物学的相关性。聚集的血管生成因子支持 U87-MG 细胞数量、迁移和对替莫唑胺的治疗抵抗增加。我们还发现 TIMP1 在促进胶质母细胞瘤肿瘤细胞迁移方面具有新的作用。总的来说,这项工作强调了使用多维水凝胶模型来评估血管生成信号在胶质母细胞瘤进展中的作用。