Suppr超能文献

多维水凝胶模型揭示了内皮网络旁分泌信号可增加胶质母细胞瘤细胞数量、侵袭性和替莫唑胺耐药性。

Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance.

机构信息

Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

Dept. Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Integr Biol (Camb). 2020 Jun 19;12(6):139-149. doi: 10.1093/intbio/zyaa010.

Abstract

Glioblastoma (GBM) is the most common primary malignant brain tumor. The tissue microenvironment adjacent to vasculature, termed the perivascular niche, has been implicated in promoting biological processes involved in glioblastoma progression such as invasion, proliferation, and therapeutic resistance. However, the exact nature of the cues that support tumor cell aggression in this niche is largely unknown. Soluble angiocrine factors secreted by tumor-associated vasculature have been shown to support such behaviors in other cancer types. Here, we exploit macroscopic and microfluidic gelatin hydrogel platforms to profile angiocrine factors secreted by self-assembled endothelial networks and evaluate their relevance to glioblastoma biology. Aggregate angiocrine factors support increases in U87-MG cell number, migration, and therapeutic resistance to temozolomide. We also identify a novel role for TIMP1 in facilitating glioblastoma tumor cell migration. Overall, this work highlights the use of multidimensional hydrogel models to evaluate the role of angiocrine signals in glioblastoma progression.

摘要

胶质母细胞瘤(GBM)是最常见的原发性恶性脑肿瘤。与脉管系统相邻的组织微环境,称为血管周龛,被认为在促进胶质母细胞瘤进展所涉及的生物学过程中发挥作用,如侵袭、增殖和治疗抵抗。然而,支持肿瘤细胞在这种龛位中侵袭的的确切信号在很大程度上尚不清楚。肿瘤相关脉管系统分泌的可溶性血管生成因子已被证明在其他癌症类型中支持这些行为。在这里,我们利用宏观和微流控明胶水凝胶平台来分析自组装的内皮网络分泌的血管生成因子,并评估它们与胶质母细胞瘤生物学的相关性。聚集的血管生成因子支持 U87-MG 细胞数量、迁移和对替莫唑胺的治疗抵抗增加。我们还发现 TIMP1 在促进胶质母细胞瘤肿瘤细胞迁移方面具有新的作用。总的来说,这项工作强调了使用多维水凝胶模型来评估血管生成信号在胶质母细胞瘤进展中的作用。

相似文献

2
Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel.
Biomaterials. 2019 Apr;198:122-134. doi: 10.1016/j.biomaterials.2018.06.013. Epub 2018 Jun 13.
3
Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.
J Neurooncol. 2018 May;137(3):511-522. doi: 10.1007/s11060-018-2763-2. Epub 2018 Jan 22.
6
Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
Acta Biomater. 2023 Jun;163:400-414. doi: 10.1016/j.actbio.2022.05.048. Epub 2022 Jun 1.
9
Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma.
J Neurooncol. 2019 Jan;141(1):31-41. doi: 10.1007/s11060-018-03017-7. Epub 2018 Nov 3.
10
IKBKE enhances TMZ-chemoresistance through upregulation of MGMT expression in glioblastoma.
Clin Transl Oncol. 2020 Aug;22(8):1252-1262. doi: 10.1007/s12094-019-02251-3. Epub 2019 Dec 21.

引用本文的文献

1
Size-dependent invasion and therapeutic phenotype of 42MGBA glioblastoma spheroids.
bioRxiv. 2025 Aug 6:2025.07.09.663980. doi: 10.1101/2025.07.09.663980.
3
Radiation Damage to a Three-Dimensional Hydrogel Model of the Brain Perivascular Niche.
Tissue Eng Part C Methods. 2025 May;31(5):181-190. doi: 10.1089/ten.tec.2025.0007. Epub 2025 May 7.
5
Radiation damage to a three-dimensional hydrogel model of the brain perivascular niche.
bioRxiv. 2025 Feb 26:2025.02.20.639287. doi: 10.1101/2025.02.20.639287.
6
A promising breakthrough in pancreatic cancer research: The potential of spheroids as 3D models.
Bioimpacts. 2024 May 6;15:30241. doi: 10.34172/bi.30241. eCollection 2025.
7
Glioblastoma drives protease-independent extracellular matrix invasion of microglia.
Mater Today Bio. 2025 Jan 9;31:101475. doi: 10.1016/j.mtbio.2025.101475. eCollection 2025 Apr.
9
Biologically inspired heterogeneous learning for accurate, efficient and low-latency neural network.
Natl Sci Rev. 2024 Aug 30;12(1):nwae301. doi: 10.1093/nsr/nwae301. eCollection 2025 Jan.
10
Gelatin methacryloyl biomaterials and strategies for trophoblast research.
Placenta. 2024 Nov;157:67-75. doi: 10.1016/j.placenta.2024.09.016. Epub 2024 Sep 24.

本文引用的文献

1
Vessel co-option in glioblastoma: emerging insights and opportunities.
Angiogenesis. 2020 Feb;23(1):9-16. doi: 10.1007/s10456-019-09691-z. Epub 2019 Nov 2.
3
Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy.
Nat Cell Biol. 2019 Feb;21(2):238-250. doi: 10.1038/s41556-018-0267-0. Epub 2019 Jan 21.
5
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions.
Biomaterials. 2019 Apr;198:63-77. doi: 10.1016/j.biomaterials.2018.07.048. Epub 2018 Jul 30.
6
3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes.
Biomaterials. 2018 Oct;180:117-129. doi: 10.1016/j.biomaterials.2018.07.014. Epub 2018 Jul 12.
7
Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel.
Biomaterials. 2019 Apr;198:122-134. doi: 10.1016/j.biomaterials.2018.06.013. Epub 2018 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验