Suppr超能文献

一种使用指数随机图模型重建考古网络的框架。

A Framework for Reconstructing Archaeological Networks Using Exponential Random Graph Models.

作者信息

Amati Viviana, Mol Angus, Shafie Termeh, Hofman Corinne, Brandes Ulrik

机构信息

Department of Humanities, Social and Political Sciences, Social Networks Lab, ETH Zurich, Weinbergstrasse 109, 8092 Zurich, Switzerland.

Leiden University Centre for Digital Humanities, Nonnensteeg 1-3, 2311 VJ Leiden, The Netherlands.

出版信息

J Archaeol Method Theory. 2020;27(2):192-219. doi: 10.1007/s10816-019-09423-z. Epub 2019 Aug 19.

Abstract

Reconstructing ties between archaeological contexts may contribute to explain and describe a variety of past social phenomena. Several models have been formulated to infer the structure of such archaeological networks. The applicability of these models in diverse archaeological contexts is limited by the restricted set of assumptions that fully determine the mathematical formulation of the models and are often articulated on a dyadic basis. Here, we present a general framework in which we combine exponential random graph models with archaeological substantiations of mechanisms that may be responsible for network formation. This framework may be applied to infer the structure of ancient networks in a large variety of archaeological settings. We use data collected over a set of sites in the Caribbean during the period AD 100-400 to illustrate the steps to obtain a network reconstruction.

摘要

重建考古背景之间的联系有助于解释和描述各种过去的社会现象。已经制定了几种模型来推断此类考古网络的结构。这些模型在不同考古背景下的适用性受到一组有限假设的限制,这些假设完全决定了模型的数学公式,并且通常是在二元基础上阐述的。在这里,我们提出了一个通用框架,在这个框架中,我们将指数随机图模型与可能负责网络形成的机制的考古证据相结合。这个框架可用于推断各种考古环境中古代网络的结构。我们使用在公元100 - 400年期间在加勒比地区一组遗址上收集的数据来说明获得网络重建的步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c76/7252583/c48a19bcc58d/10816_2019_9423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验