Suppr超能文献

在模拟重复公共物品博弈中,基于合作下降的早期预警信号训练长短期记忆神经网络。

Training LSTM-neural networks on early warning signals of declining cooperation in simulated repeated public good games.

作者信息

Füllsack Manfred, Kapeller Marie, Plakolb Simon, Jäger Georg

机构信息

Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Austria.

出版信息

MethodsX. 2020 May 16;7:100920. doi: 10.1016/j.mex.2020.100920. eCollection 2020.

Abstract

We present results of attempts to expand and enhance the predictive power of Early Warning Signals (EWS) for Critical Transitions (Scheffer et al. 2009) through the deployment of a Long-Short-Term-Memory (LSTM) Neural Network on agent-based simulations of a Repeated Public Good Game, which due to positive feedbacks on experience and social entrainment transits abruptly from majority cooperation to majority defection and back. Our method extension is inspired by several known deficiencies of EWS and by lacking possibilities to consider micro-level interaction in the so far primarily used simulation methods. We find that•••

摘要

我们展示了通过在重复公共物品博弈的基于主体的模拟中部署长短期记忆(LSTM)神经网络,来扩展和增强关键转变的早期预警信号(EWS)预测能力的尝试结果(Scheffer等人,2009年)。由于经验上的正反馈和社会同步,该博弈会突然从多数合作转变为多数背叛,然后再转变回来。我们的方法扩展受到EWS的几个已知缺陷以及在目前主要使用的模拟方法中缺乏考虑微观层面相互作用可能性的启发。我们发现•••

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验