Füllsack Manfred, Kapeller Marie, Plakolb Simon, Jäger Georg
Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Graz, Austria.
MethodsX. 2020 May 16;7:100920. doi: 10.1016/j.mex.2020.100920. eCollection 2020.
We present results of attempts to expand and enhance the predictive power of Early Warning Signals (EWS) for Critical Transitions (Scheffer et al. 2009) through the deployment of a Long-Short-Term-Memory (LSTM) Neural Network on agent-based simulations of a Repeated Public Good Game, which due to positive feedbacks on experience and social entrainment transits abruptly from majority cooperation to majority defection and back. Our method extension is inspired by several known deficiencies of EWS and by lacking possibilities to consider micro-level interaction in the so far primarily used simulation methods. We find that•••
我们展示了通过在重复公共物品博弈的基于主体的模拟中部署长短期记忆(LSTM)神经网络,来扩展和增强关键转变的早期预警信号(EWS)预测能力的尝试结果(Scheffer等人,2009年)。由于经验上的正反馈和社会同步,该博弈会突然从多数合作转变为多数背叛,然后再转变回来。我们的方法扩展受到EWS的几个已知缺陷以及在目前主要使用的模拟方法中缺乏考虑微观层面相互作用可能性的启发。我们发现•••