Suppr超能文献

一种用于验证合成时间序列生成中多样性的方法。

A Methodology for Validating Diversity in Synthetic Time Series Generation.

作者信息

Bahrpeyma Fouad, Roantree Mark, Cappellari Paolo, Scriney Michael, McCarren Andrew

机构信息

Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin 9, Ireland.

VistaMilk SFI Research Centre, Dublin City University, Dublin 9, Ireland.

出版信息

MethodsX. 2021 Jul 24;8:101459. doi: 10.1016/j.mex.2021.101459. eCollection 2021.

Abstract

In order for researchers to deliver robust evaluations of time series models, it often requires high volumes of data to ensure the appropriate level of rigor in testing. However, for many researchers, the lack of time series presents a barrier to a deeper evaluation. While researchers have developed and used synthetic datasets, the development of this data requires a methodological approach to testing the entire dataset against a set of metrics which capture the diversity of the dataset. Unless researchers are confident that their test datasets display a broad set of time series characteristics, it may favor one type of predictive model over another. This can have the effect of undermining the evaluation of new predictive methods. In this paper, we present a new approach to generating and evaluating a high number of time series data. The construction algorithm and validation framework are described in detail, together with an analysis of the level of diversity present in the synthetic dataset.

摘要

为了让研究人员能够对时间序列模型进行可靠的评估,通常需要大量数据来确保测试具有适当的严谨性。然而,对于许多研究人员来说,缺乏时间序列数据成为了进行更深入评估的障碍。虽然研究人员已经开发并使用了合成数据集,但这种数据的开发需要一种方法来根据一组能够反映数据集多样性的指标对整个数据集进行测试。除非研究人员确信他们的测试数据集展现出广泛的时间序列特征,否则可能会使一种预测模型比另一种更具优势。这可能会削弱对新预测方法的评估。在本文中,我们提出了一种生成和评估大量时间序列数据的新方法。详细描述了构建算法和验证框架,同时分析了合成数据集中存在的多样性水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a50f/8374706/de34ef5cd6d1/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验