Rentola Raisa R, Skrifvars Markus B, Heinonen Erkki, Häggblom Tom, Hästbacka Johanna
Division of Intensive Care, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
Department of Emergency Care and Services, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
Acta Anaesthesiol Scand. 2020 Oct;64(9):1287-1294. doi: 10.1111/aas.13652. Epub 2020 Jul 8.
Controlling arterial carbon dioxide is paramount in mechanically ventilated patients, and an accurate and continuous noninvasive monitoring method would optimize management in dynamic situations. In this study, we validated and further refined formulas for estimating partial pressure of carbon dioxide with respiratory gas and pulse oximetry data in mechanically ventilated cardiac arrest patients.
A total of 4741 data sets were collected retrospectively from 233 resuscitated patients undergoing therapeutic hypothermia. The original formula used to analyze the data is PaCO -est1 = PETCO + k[(PIO - PETCO ) - PaO ]. To achieve better accuracy, we further modified the formula to PaCO -est2 = k *PETCO + k *(PIO - PETCO ) + k *(100-SpO ). The coefficients were determined by identifying the minimal difference between the measured and calculated arterial carbon dioxide values in a development set. The accuracy of these two methods was compared with the estimation of the partial pressure of carbon dioxide using end-tidal carbon dioxide.
With PaCO -est1, the mean difference between the partial pressure of carbon dioxide, and the estimated carbon dioxide was 0.08 kPa (SE ±0.003); with PaCO -est2 the difference was 0.036 kPa (SE ±0.009). The mean difference between the partial pressure of carbon dioxide and end-tidal carbon dioxide was 0.72 kPa (SE ±0.01). In a mixed linear model, there was a significant difference between the estimation using end-tidal carbon dioxide and PaCO -est1 (P < .001) and PaCO -est2 (P < .001) respectively.
This novel formula appears to provide an accurate, continuous, and noninvasive estimation of arterial carbon dioxide.
在机械通气患者中,控制动脉血二氧化碳至关重要,一种准确且连续的无创监测方法将优化动态情况下的管理。在本研究中,我们验证并进一步完善了利用机械通气心脏骤停患者的呼吸气体和脉搏血氧饱和度数据估算二氧化碳分压的公式。
回顾性收集了233例接受治疗性低温的复苏患者的4741组数据集。用于分析数据的原始公式为PaCO -est1 = PETCO + k[(PIO - PETCO) - PaO]。为了获得更高的准确性,我们将公式进一步修改为PaCO -est2 = k *PETCO + k *(PIO - PETCO) + k *(100 - SpO)。通过确定开发集中测量的和计算的动脉血二氧化碳值之间的最小差异来确定系数。将这两种方法的准确性与使用呼气末二氧化碳估算二氧化碳分压的方法进行比较。
使用PaCO -est1时,二氧化碳分压与估算的二氧化碳之间的平均差异为0.08 kPa(标准误±0.003);使用PaCO -est时,差异为kPa(标准误±0.009)。二氧化碳分压与呼气末二氧化碳之间的平均差异为0.72 kPa(标准误±0.01)。在混合线性模型中,使用呼气末二氧化碳估算与PaCO -est1(P <.001)和PaCO -est2(P <.001)之间分别存在显著差异。
这种新公式似乎能提供准确、连续且无创的动脉血二氧化碳估算。