School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
ACS Synth Biol. 2020 Jul 17;9(7):1843-1854. doi: 10.1021/acssynbio.0c00197. Epub 2020 Jun 26.
Accessing the full biosynthetic potential encoded in the genomes of fungi is limited by the low expression of most biosynthetic gene clusters (BGCs) under common laboratory culture conditions. CRISPR-mediated transcriptional activation (CRISPRa) of fungal BGCs could accelerate genomics-driven bioactive secondary metabolite discovery. In this work, we established the first CRISPRa system for filamentous fungi. First, we constructed a CRISPR/dLbCas12a-VPR-based system and demonstrated the activation of a fluorescent reporter in . Then, we targeted the native nonribosomal peptide synthetase-like (NRPS-like) gene in both chromosomal and episomal contexts, achieving increased production of the compound microperfuranone. Finally, multigene CRISPRa led to the discovery of the cluster product as dehydromicroperfuranone. Additionally, we demonstrated the utility of the variant dLbCas12a-VPR for CRISPRa at room temperature culture conditions. Different aspects that influence the efficiency of CRISPRa in fungi were investigated, providing a framework for the further development of fungal artificial transcription factors based on CRISPR/Cas.
在常见的实验室培养条件下,大多数生物合成基因簇(BGCs)的表达水平较低,从而限制了真菌全生物合成潜能的开发。CRISPR 介导的转录激活(CRISPRa)可加速基于基因组学的生物活性次级代谢产物的发现。在这项工作中,我们建立了第一个丝状真菌的 CRISPRa 系统。首先,我们构建了一个基于 CRISPR/dLbCas12a-VPR 的系统,并证明了在. 中荧光报告基因的激活。然后,我们在染色体和附加体背景下靶向天然非核糖体肽合成酶样(NRPS-like)基因 ,实现了化合物微二酮的产量增加。最后,多基因 CRISPRa 导致了脱水微二酮的发现。此外,我们还证明了在室温培养条件下,变体 dLbCas12a-VPR 对 CRISPRa 的有效性。我们还研究了影响真菌中 CRISPRa 效率的不同方面,为进一步开发基于 CRISPR/Cas 的真菌人工转录因子提供了框架。