Wang Yifan, Jia Boyu, Wang Jing, Xue Peiyao, Xiao Yiqun, Li Tengfei, Wang Jiayu, Lu Heng, Tang Zheng, Lu Xinhui, Huang Fei, Zhan Xiaowei
Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China.
College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Adv Mater. 2020 Jul;32(29):e2002066. doi: 10.1002/adma.202002066. Epub 2020 Jun 11.
To take advantages of the intense absorption and fluorescence, high charge mobility, and high dielectric constant of CsPbI perovskite quantum dots (PQDs), PQD hybrid nonfullerene organic solar cells (OSCs) are fabricated. Addition of PQDs leads to simultaneous enhancement of open-circuit voltage (V ), short-circuit current density (J ), and fill factor (FF); power conversion efficiencies are boosted from 11.6% to 13.2% for PTB7-Th:FOIC blend and from 15.4% to 16.6% for PM6:Y6 blend. Incorporation of PQDs dramatically increases the energy of the charge transfer state, resulting in near-zero driving force and improved V . Interestingly, at near-zero driving force, the PQD hybrid OSCs show more efficient charge generation than the control device without PQDs, contributing to enhanced J , due to the formation of cascade band structure and increased molecular ordering. The strong fluorescence of the PQDs enhances the external quantum efficiency of the electroluminescence of the active layer, which can reduce nonradiative recombination voltage loss. The high dielectric constant of the PQDs screens the Coulombic interactions and reduces charge recombination, which is beneficial for increased FF. This work may open up wide applicability of perovskite quantum dots and an avenue toward high-performance nonfullerene solar cells.
为利用CsPbI钙钛矿量子点(PQD)的强吸收和荧光特性、高电荷迁移率以及高介电常数,制备了PQD混合非富勒烯有机太阳能电池(OSC)。添加PQD可同时提高开路电压(V)、短路电流密度(J)和填充因子(FF);对于PTB7-Th:FOIC混合体系,功率转换效率从11.6%提高到13.2%,对于PM6:Y6混合体系,功率转换效率从15.4%提高到16.6%。掺入PQD显著提高了电荷转移态的能量,导致驱动力接近零并提高了V。有趣的是,在驱动力接近零时,PQD混合OSC比不含PQD的对照器件表现出更高效的电荷产生,这有助于提高J,这是由于形成了级联能带结构并增加了分子有序性。PQD的强荧光增强了活性层电致发光的外量子效率,这可以减少非辐射复合电压损失。PQD的高介电常数屏蔽了库仑相互作用并减少了电荷复合,这有利于提高FF。这项工作可能会开拓钙钛矿量子点的广泛应用,并为高性能非富勒烯太阳能电池开辟一条途径。