Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China.
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Molecules. 2021 Mar 17;26(6):1670. doi: 10.3390/molecules26061670.
Perovskite quantum dots (PQDs) have drawn global attention in recent years and have been used in a range of semiconductor devices, especially for light-emitting diodes (LEDs). However, because of the nature of low-conductive ligands of PQDs and surface and bulk defects in the devices, charge injection and transport should be carefully managed in order to maximize the electroluminescent performances. In this study, we employed three p-dopants, i.e., 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), 1,3,4,5,7,8-hexafluoro-11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (F6-TCNNQ), and 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (TCNH14), respectively doped into the commonly used hole transporting layer (HTL) poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA). Compared with the devices with the neat PTAA, those with the doped PTAA as the HTLs achieved the improved electroluminescent performances. In particular, the device with the strong oxidant F4-TCNQ exhibited an improvement factor of 27% in the peak external quantum efficiency compared with the control device with the neat PTAA. The capacitance and transient electroluminescent measurements were carried out to identify the imperceptible interactions in the doped HTL and at the interface between the HTL and PQDs.
钙钛矿量子点 (PQDs) 近年来引起了全球关注,并已应用于多种半导体器件,尤其是发光二极管 (LED)。然而,由于 PQDs 低导电配体的性质以及器件中的表面和体缺陷,为了最大限度地提高电致发光性能,应仔细管理电荷注入和传输。在这项研究中,我们分别使用了三种 p 型掺杂剂,即 2,3,5,6-四氟-7,7,8,8-四氰基对醌二甲烷 (F4-TCNQ)、1,3,4,5,7,8-六氟-11,11,12,12-四氰基萘-2,6-二亚基喹喔啉 (F6-TCNNQ) 和 11,11,12,12-四氰基萘-2,6-二亚基喹喔啉 (TCNH14),分别掺杂到常用的空穴传输层 (HTL) 聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 中。与具有纯 PTAA 的器件相比,具有掺杂 PTAA 作为 HTL 的器件实现了改进的电致发光性能。特别是,具有强氧化剂 F4-TCNQ 的器件与具有纯 PTAA 的对照器件相比,其峰值外量子效率提高了 27%。进行了电容和瞬态电致发光测量,以识别掺杂 HTL 中和 HTL 与 PQDs 之间界面处的不易察觉的相互作用。