Suppr超能文献

单轴压缩对砷化镓纳米线太阳能电池的影响。

Effect of the Uniaxial Compression on the GaAs Nanowire Solar Cell.

作者信息

Alekseev Prokhor A, Sharov Vladislav A, Borodin Bogdan R, Dunaevskiy Mikhail S, Reznik Rodion R, Cirlin George E

机构信息

Ioffe Institute, 194021 Saint-Petersburg, Russia.

Alferov University, 194021 Saint-Petersburg, Russia.

出版信息

Micromachines (Basel). 2020 Jun 10;11(6):581. doi: 10.3390/mi11060581.

Abstract

Research regarding ways to increase solar cell efficiency is in high demand. Mechanical deformation of a nanowire (NW) solar cell can improve its efficiency. Here, the effect of uniaxial compression on GaAs nanowire solar cells was studied via conductive atomic force microscopy (C-AFM) supported by numerical simulation. C-AFM I-V curves were measured for wurtzite p-GaAs NW grown on p-Si substrate. Numerical simulations were performed considering piezoresistance and piezoelectric effects. Solar cell efficiency reduction of 50% under a -0.5% strain was observed. The analysis demonstrated the presence of an additional fixed electrical charge at the NW/substrate interface, which was induced due to mismatch between the crystal lattices, thereby affecting the efficiency. Additionally, numerical simulations regarding the p-n GaAs NW solar cell under uniaxial compression were performed, showing that solar efficiency could be controlled by mechanical deformation and configuration of the wurtzite and zinc blende p-n segments in the NW. The relative solar efficiency was shown to be increased by 6.3% under -0.75% uniaxial compression. These findings demonstrate a way to increase efficiency of GaAs NW-based solar cells via uniaxial mechanical compression.

摘要

对于提高太阳能电池效率方法的研究需求很高。纳米线(NW)太阳能电池的机械变形可以提高其效率。在此,通过数值模拟支持的导电原子力显微镜(C-AFM)研究了单轴压缩对GaAs纳米线太阳能电池的影响。对生长在p-Si衬底上的纤锌矿p-GaAs NW测量了C-AFM的I-V曲线。考虑了压阻效应和压电效应进行了数值模拟。观察到在-0.5%应变下太阳能电池效率降低了50%。分析表明在NW/衬底界面存在额外的固定电荷,这是由于晶格失配引起的,从而影响了效率。此外,对单轴压缩下的p-n GaAs NW太阳能电池进行了数值模拟,结果表明太阳能效率可以通过NW中纤锌矿和闪锌矿p-n段的机械变形和配置来控制。在-0.75%单轴压缩下,相对太阳能效率提高了6.3%。这些发现展示了一种通过单轴机械压缩提高基于GaAs NW的太阳能电池效率的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a660/7345117/4b1cbdc5e882/micromachines-11-00581-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验