Suppr超能文献

从磁共振图像中进行准确稳健的全头部分割,以进行个体化头部建模。

Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling.

机构信息

Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.

Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.

出版信息

Neuroimage. 2020 Oct 1;219:117044. doi: 10.1016/j.neuroimage.2020.117044. Epub 2020 Jun 11.

Abstract

Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.

摘要

经颅脑刺激(TBS)已被确立为一种调节和映射人类大脑功能的方法,并且在几种脑部疾病中作为一种潜在的治疗工具。通常,刺激是使用一刀切的方法应用的,对于电极(在电刺激(TES)中)或线圈(在磁刺激(TMS)中),对于个体之间的解剖学变异性不予考虑。然而,头部中的感应电场分布在很大程度上取决于个体之间的解剖学特征,这意味着需要针对焦点剂量使用个性化的刺激方案。这需要结合电场模拟,使用个体头部解剖结构的详细模型,为给定的皮质目标找到最佳的刺激方案。考虑到不同脑疾病和病变的解剖学和功能复杂性,为了将 TBS 从研究工具转化为可行的治疗选择,必须考虑解剖学变异性。在本文中,我们提出了一种新方法,称为 CHARM,用于从磁共振(MR)扫描中自动分割十五种不同的头部组织。与五项组织分割任务中的两种免费可用软件工具相比,新方法具有更好的性能,同时在所有十五种组织中获得了合理的分割准确性。该方法自动适应输入扫描的变化,因此可以直接应用于具有不同扫描仪、序列或设置的临床或研究扫描。我们表明,与基于参考分割构建的解剖头部模型相比,自动分割准确性的提高导致电场模拟中的相对误差降低。然而,改进的分割以及由此产生的电场模拟也受到输入 MR 扫描中系统伪影的影响。只要未考虑到这些伪影,就会导致在参考模拟中局部模拟差异达到峰值场强的 30%。最后,我们举例说明了在电场模拟中包括所有十五种组织类别与仅使用五种组织类别的标准方法相比的效果,并表明对于特定的刺激配置,局部差异可达到峰值场强的 10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1286/8048089/bb08c4598d88/nihms-1622639-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验