Suppr超能文献

一种用于放射治疗计划中脑肿瘤和危及器官分割的模态自适应方法。

A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning.

作者信息

Agn Mikael, Munck Af Rosenschöld Per, Puonti Oula, Lundemann Michael J, Mancini Laura, Papadaki Anastasia, Thust Steffi, Ashburner John, Law Ian, Van Leemput Koen

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark.

Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.

出版信息

Med Image Anal. 2019 May;54:220-237. doi: 10.1016/j.media.2019.03.005. Epub 2019 Mar 22.

Abstract

In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.

摘要

在本文中,我们提出了一种方法,用于同时分割脑肿瘤和一组广泛的危及器官,以用于胶质母细胞瘤的放射治疗计划。该方法将用于全脑分割的对比度自适应生成模型与使用卷积受限玻尔兹曼机的肿瘤形状新空间正则化模型相结合。我们通过实验证明,该方法能够适应与任何可用训练数据有很大差异的图像采集,确保其在各个治疗部位的适用性;其肿瘤分割精度与当前的技术水平相当;并且它能为放射治疗计划目的充分捕捉大多数危及器官。所提出的方法可能是朝着自动描绘接受放射治疗的胶质母细胞瘤患者的脑肿瘤和危及器官迈出的有价值的一步。

相似文献

2
Multi-scale segmentation in GBM treatment using diffusion tensor imaging.使用弥散张量成像进行 GBM 治疗中的多尺度分割。
Comput Biol Med. 2020 Aug;123:103815. doi: 10.1016/j.compbiomed.2020.103815. Epub 2020 May 22.
5
Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.基于全卷积神经网络的 FLAIR MRI 脑肿瘤分割。
Comput Methods Programs Biomed. 2019 Jul;176:135-148. doi: 10.1016/j.cmpb.2019.05.006. Epub 2019 May 11.
6
Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model.基于计算肿瘤生长模型的个性化放疗计划。
IEEE Trans Med Imaging. 2017 Mar;36(3):815-825. doi: 10.1109/TMI.2016.2626443. Epub 2016 Nov 8.
10
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.

引用本文的文献

1
Synthetic data in generalizable, learning-based neuroimaging.可推广的基于学习的神经影像学中的合成数据。
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.

本文引用的文献

4
Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model.基于计算肿瘤生长模型的个性化放疗计划。
IEEE Trans Med Imaging. 2017 Mar;36(3):815-825. doi: 10.1109/TMI.2016.2626443. Epub 2016 Nov 8.
7
Glioblastoma: Overview of Disease and Treatment.胶质母细胞瘤:疾病与治疗概述
Clin J Oncol Nurs. 2016 Oct 1;20(5 Suppl):S2-8. doi: 10.1188/16.CJON.S1.2-8.
9
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
10
Sampling image segmentations for uncertainty quantification.采样图像分割进行不确定性量化。
Med Image Anal. 2016 Dec;34:42-51. doi: 10.1016/j.media.2016.04.005. Epub 2016 May 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验