Suppr超能文献

从真实世界数据中开发马尔可夫模型:使用行政数据进行心力衰竭建模的案例研究。

Developing Markov Models From Real-World Data: A Case Study of Heart Failure Modeling Using Administrative Data.

机构信息

School of Health and Related Research, University of Sheffield, Sheffield, England, UK.

School of Health and Related Research, University of Sheffield, Sheffield, England, UK.

出版信息

Value Health. 2020 Jun;23(6):743-750. doi: 10.1016/j.jval.2020.02.012.

Abstract

OBJECTIVES

Markov models characterize disease progression as specific health states based on clinical or biological measures. However, these measures are not always collected outside clinical trials. In this article, an alternative approach is presented that uses real-world data to define the health states and to model transitions between them, specific to a local setting, to estimate the cost-effectiveness of telemonitoring (TM) versus no TM for heart failure.

METHODS

The incidence of hospitalization for usual care was estimated from hospital episode statistics (HES) data in the United Kingdom and converted into a monthly transition matrix with 5 health states (4 states are defined based on the number of hospitalizations in the previous year and death) to estimate the cost-effectiveness of TM in a local UK primary care trust (PCT) using probabilistic sensitivity analysis from a healthcare perspective.

RESULTS

Geographical variation in hospitalization rates were present, which led to different health state transition matrices in different localities. In the PCT that was evaluated, TM accrued mean additional costs of £3610 and 0.075 additional quality-adjusted life-years (QALYs) compared with usual care per patient, resulting in a mean incremental cost effectiveness ratio of £48 172/QALY.

CONCLUSIONS

The use of administrative data to define health states and transition matrices based on health service events is feasible, and TM was not cost-effective in our analysis. Given the increasing emphasis on using real-world evidence, it is likely that these approaches will be used more in the future.

摘要

目的

马尔可夫模型根据临床或生物学指标将疾病进展描述为特定的健康状态。然而,这些指标并不总是在临床试验之外收集。本文提出了一种替代方法,使用真实世界的数据来定义健康状态,并对其进行建模,以特定的本地环境为基础,模拟它们之间的转移,从而估算针对心力衰竭的远程监测(TM)与无 TM 的成本效益。

方法

从英国的医院病例统计(HES)数据中估算出常规护理的住院发生率,并将其转换为具有 5 种健康状态的每月转移矩阵(4 种状态基于前一年的住院次数和死亡人数来定义),以从医疗保健角度使用概率敏感性分析来估算英国当地初级保健信托(PCT)中 TM 的成本效益。

结果

存在住院率的地域差异,导致不同地区的健康状态转移矩阵不同。在所评估的 PCT 中,与常规护理相比,TM 为每位患者增加了 3610 英镑的额外成本和 0.075 个额外的质量调整生命年(QALY),导致平均增量成本效益比为 48172 英镑/QALY。

结论

使用行政数据根据卫生服务事件定义健康状态和转移矩阵是可行的,并且在我们的分析中 TM 不具有成本效益。鉴于越来越强调使用真实世界证据,这些方法在未来可能会得到更广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验