Suppr超能文献

局部结构可以识别和量化大规模社交网络中具有影响力的全局传播者。

Local structure can identify and quantify influential global spreaders in large scale social networks.

机构信息

School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China;

School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7468-7472. doi: 10.1073/pnas.1710547115. Epub 2018 Jul 3.

Abstract

Measuring and optimizing the influence of nodes in big-data online social networks are important for many practical applications, such as the viral marketing and the adoption of new products. As the viral spreading on a social network is a global process, it is commonly believed that measuring the influence of nodes inevitably requires the knowledge of the entire network. Using percolation theory, we show that the spreading process displays a nucleation behavior: Once a piece of information spreads from the seeds to more than a small characteristic number of nodes, it reaches a point of no return and will quickly reach the percolation cluster, regardless of the entire network structure; otherwise the spreading will be contained locally. Thus, we find that, without the knowledge of the entire network, any node's global influence can be accurately measured using this characteristic number, which is independent of the network size. This motivates an efficient algorithm with constant time complexity on the long-standing problem of best seed spreaders selection, with performance remarkably close to the true optimum.

摘要

测量和优化大数据在线社交网络中的节点的影响对于许多实际应用非常重要,例如病毒营销和新产品的采用。由于社交网络上的病毒传播是一个全局过程,因此人们普遍认为,测量节点的影响必然需要整个网络的知识。我们利用渗流理论表明,传播过程表现出成核行为:一旦一条信息从种子传播到超过一个小的特征数量的节点,它就会到达一个不可逆转的点,并且无论整个网络结构如何,它都会迅速到达渗流簇;否则,传播将在本地被包含。因此,我们发现,无需整个网络的知识,就可以使用这个特征数量准确测量任何节点的全局影响,而与网络大小无关。这激发了一种在长期存在的最佳种子传播者选择问题上具有恒定时间复杂度的高效算法,其性能与真实最优值非常接近。

相似文献

引用本文的文献

1
Growth-induced percolation on complex networks.复杂网络上的增长诱导渗流
PNAS Nexus. 2025 Jun 11;4(6):pgaf192. doi: 10.1093/pnasnexus/pgaf192. eCollection 2025 Jun.
2
Spreading dynamics of information on online social networks.在线社交网络上信息的传播动态。
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2410227122. doi: 10.1073/pnas.2410227122. Epub 2025 Jan 23.

本文引用的文献

1
Eradicating catastrophic collapse in interdependent networks via reinforced nodes.通过强化节点消除相互依存网络中的灾难性崩溃。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3311-3315. doi: 10.1073/pnas.1621369114. Epub 2017 Mar 13.
3
Locating privileged spreaders on an online social network.在在线社交网络上定位特权传播者。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066123. doi: 10.1103/PhysRevE.85.066123. Epub 2012 Jun 19.
5
Identifying influential and susceptible members of social networks.识别社交网络中的有影响力和易感染成员。
Science. 2012 Jul 20;337(6092):337-41. doi: 10.1126/science.1215842. Epub 2012 Jun 21.
7
Absence of influential spreaders in rumor dynamics.谣言传播动态中缺乏有影响力的传播者。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026116. doi: 10.1103/PhysRevE.85.026116. Epub 2012 Feb 23.
8
Branching dynamics of viral information spreading.病毒信息传播的分支动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046116. doi: 10.1103/PhysRevE.84.046116. Epub 2011 Oct 31.
9
Traffic-driven epidemic spreading in finite-size scale-free networks.有限规模无标度网络中的交通驱动的传染病传播。
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16897-902. doi: 10.1073/pnas.0907121106. Epub 2009 Sep 21.
10
Understanding the spreading patterns of mobile phone viruses.了解手机病毒的传播模式。
Science. 2009 May 22;324(5930):1071-6. doi: 10.1126/science.1167053. Epub 2009 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验