Huang Hsiu-Kang, Cheng Ho-Wen, Liao Cheng-Chieh, Lin Shang-Jyun, Chen Yi-Zih, Wang Juen-Kai, Wang Yuh-Lin, Huang Nien-Tsu
Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
Lab Chip. 2020 Jul 14;20(14):2520-2528. doi: 10.1039/d0lc00425a.
The antibiotic susceptibility test (AST) is a general laboratory procedure for bacterial identification and characterization and can be utilized to determine effective antimicrobials for individual patients. Due to the low bacterial concentration, conventional AST usually requires a prolonged bacterial culture time and a labor-intensive sample pretreatment process. Therefore, it cannot perform timely diagnosis or treatment, which results in a high mortality rate for seriously infected patients. To address this problem, we developed a microfluidic microwell device integrating surface-enhanced Raman scattering (SERS) technology, or the so called the Microwell-SERS system, to enable a rapid and high-throughput AST. Our results show that the Microwell-SERS system can successfully encapsulate bacteria in a miniaturized microwell with a greatly increased effective bacteria concentration, resulting in a shorter bacterial culture time. By attaching a microchannel onto the microwell, a smooth liquid and air exchange can purify the surrounding buffer and isolate bacteria in an individual microwell for independent SERS measurement. For proof-of-concept, we demonstrated a 2 h AST on susceptible and resistant E. coli and S. aureus with a concentration of 103 CFU mL-1 in the Microwell-SERS system, whereas the previous SERS-AST method required 108 CFU mL-1 bacterial suspension droplets dispensing on a SERS substrate. Based on the above features, we envision that the Microwell-SERS system could achieve highly sensitive, label-free, bacteria detection and rapid AST to enable timely and accurate bacterial infection disease diagnosis.
抗生素敏感性测试(AST)是一种用于细菌鉴定和表征的常规实验室程序,可用于确定针对个体患者的有效抗菌药物。由于细菌浓度低,传统的AST通常需要较长的细菌培养时间和劳动密集型的样品预处理过程。因此,它无法进行及时诊断或治疗,导致严重感染患者的死亡率很高。为了解决这个问题,我们开发了一种集成表面增强拉曼散射(SERS)技术的微流控微孔装置,即所谓的微孔-SERS系统,以实现快速且高通量的AST。我们的结果表明,微孔-SERS系统可以成功地将细菌封装在小型化的微孔中,有效细菌浓度大大提高,从而缩短细菌培养时间。通过在微孔上连接微通道,可以实现平稳的液体和空气交换,从而净化周围的缓冲液,并将细菌隔离在单个微孔中进行独立的SERS测量。为了进行概念验证,我们在微孔-SERS系统中对浓度为103 CFU mL-1的敏感和耐药大肠杆菌及金黄色葡萄球菌进行了2小时的AST测试,而之前的SERS-AST方法需要在SERS底物上滴加108 CFU mL-1的细菌悬浮液滴。基于上述特点,我们设想微孔-SERS系统可以实现高灵敏度、无标记的细菌检测和快速的AST,从而实现及时、准确的细菌感染疾病诊断。