Suppr超能文献

定量成像标准化:不同软件包从数字参考对象和患者数据集提取的放射组学特征的多中心比较。

Standardization in Quantitative Imaging: A Multicenter Comparison of Radiomic Features from Different Software Packages on Digital Reference Objects and Patient Data Sets.

机构信息

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.

Stanford University School of Medicine, Stanford, CA.

出版信息

Tomography. 2020 Jun;6(2):118-128. doi: 10.18383/j.tom.2019.00031.

Abstract

Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography-computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features.

摘要

放射组学特征正越来越多地被应用于临床研究。本研究旨在评估在严格控制条件下,使用不同软件包由多个小组计算的放射组学特征之间的一致性,这些条件包括标准化特征定义和常见的图像数据集。十个地点(9 个来自 NCI 的定量成像网络正电子发射断层扫描计算机断层扫描工作组,外加一个来自该工作组之外的地点)参与了该项目。选择了 9 个常见的定量成像特征进行比较,包括描述形态、强度、形状和纹理的特征。共同的图像数据集包括:三个 3D 数字参考对象(DRO)和 10 个来自 Lung Image Database Consortium 数据集的患者图像扫描,每个扫描中都有一个特定的病变。每个对象(DRO 或病变)都附有一个已经定义的感兴趣区域,从中计算特征。报告每个对象(DRO 或病变)的特征值。针对每个对象(DRO 或病变)的每个特征,计算了软件包之间的变异系数(CV),表示为百分比。对于 DRO 和患者数据集,共获得了 13 组结果。在 9 个特征中,有 5 个具有极好的一致性(CV < 1%);1 个特征具有中度一致性(CV < 10%),而 3 个特征即使在尝试对特征计算进行协调后,其变化幅度仍较大(CV ≥ 10%)。这项工作突出了特征定义标准化的价值,以及进一步明确某些特征定义的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f4c/7289262/8242334ddb1c/GP-TOMJ200008F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验