Amirouche A, Esteves J, Lavoignat A, Picot S, Ferrigno R, Faivre M
Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270 CNRS, Université Lyon 1, Villeurbanne F-69622, France.
Malaria Research Unit, SMITh, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246 CNRS, Université Lyon 1, Villeurbanne F-69622, France.
Biomicrofluidics. 2020 Apr 28;14(2):024116. doi: 10.1063/5.0005198. eCollection 2020 Mar.
Micropipette aspiration, optical tweezers, rheometry, or ecktacytometry have been used to study the shape recovery of healthy human Red Blood Cells (RBCs) and measure associated relaxation times of the order of 100-300 ms. These measurements are in good agreement with the Kelvin-Voigt model, which describes the cell as a visco-elastic material, predicting that its relaxation time only depends on cell intrinsic properties. However, such mechanical solicitation techniques are far from being relevant regarding RBC solicitation . In this paper, we report for the first time the existence of two different behaviors of the RBC shape recovery while flowing out of a microfluidic constricted channel. The calculation of the viscous stress corresponding to the frontier between the two recovery modes confirms that the RBC resistance to shear is the elastic property dominating the transition between the two recovery behaviors. We also quantified associated recovery times and report values as low as 4 ms-which is almost two decades smaller than the typical RBC relaxation time-at high viscosity and flow velocity of the carrier fluid. Although we cannot talk about relaxation time because the cell is never at rest, we believe that the measured shape recovery time arises from the coupling of the cell intrinsic deformability and the hydrodynamic stress. Depending on the flow conditions, the cell mechanics becomes dominant and drives the shape recovery process, allowing the measurement of recovery times of the same order of magnitude than relaxation times previously published. Finally, we demonstrated that the measurement of the shape recovery time can be used to distinguish (causing malaria) infected RBCs from healthy RBCs.
微量移液管抽吸、光镊、流变学或红细胞变形性测定法已被用于研究健康人类红细胞(RBC)的形状恢复,并测量相关的弛豫时间,其量级为100 - 300毫秒。这些测量结果与开尔文 - 沃伊特模型高度吻合,该模型将细胞描述为一种粘弹性材料,预测其弛豫时间仅取决于细胞的固有特性。然而,就红细胞受激而言,此类机械刺激技术远非适用。在本文中,我们首次报告了红细胞从微流控收缩通道流出时存在两种不同的形状恢复行为。对应于两种恢复模式之间边界的粘性应力计算证实,红细胞对剪切的阻力是主导两种恢复行为之间转变的弹性特性。我们还对相关的恢复时间进行了量化,并报告了在载液的高粘度和流速下低至4毫秒的值,这几乎比典型的红细胞弛豫时间小两个数量级。尽管由于细胞从未静止,我们不能称之为弛豫时间,但我们认为测得的形状恢复时间源于细胞固有可变形性与流体动力应力的耦合。根据流动条件,细胞力学起主导作用并驱动形状恢复过程,从而能够测量与先前发表的弛豫时间相同量级的恢复时间。最后,我们证明了形状恢复时间的测量可用于区分感染疟原虫的红细胞与健康红细胞。