State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
Environ Sci Technol. 2020 Jul 21;54(14):8589-8600. doi: 10.1021/acs.est.0c02923. Epub 2020 Jul 1.
Efficient prediction of the air quality response to emission changes is a prerequisite for an integrated assessment system in developing effective control policies. Yet, representing the nonlinear response of air quality to emission controls with accuracy remains a major barrier in air quality-related decision making. Here, we demonstrate a novel method that combines deep learning approaches with chemical indicators of pollutant formation to quickly estimate the coefficients of air quality response functions using ambient concentrations of 18 chemical indicators simulated with a comprehensive atmospheric chemical transport model (CTM). By requiring only two CTM simulations for model application, the new method significantly enhances the computational efficiency compared to existing methods that achieve lower accuracy despite requiring 20+ CTM simulations (the benchmark statistical model). Our results demonstrate the utility of deep learning approaches for capturing the nonlinearity of atmospheric chemistry and physics and the prospects of the new method to support effective policymaking in other environment systems.
高效预测排放变化对空气质量的响应是开发有效控制政策的综合评估系统的前提。然而,准确地表示空气质量对排放控制的非线性响应仍然是空气质量相关决策中的一个主要障碍。在这里,我们展示了一种新的方法,该方法结合了深度学习方法和污染物形成的化学指标,使用综合大气化学传输模型 (CTM) 模拟的 18 种化学指标的环境浓度,快速估计空气质量响应函数的系数。通过仅要求模型应用进行两次 CTM 模拟,与需要 20 多次 CTM 模拟(基准统计模型)的现有方法相比,新方法显著提高了计算效率。我们的结果表明,深度学习方法在捕捉大气化学和物理的非线性方面具有实用性,并且该新方法有望在其他环境系统中支持有效的决策制定。