Suppr超能文献

利用电子健康记录中嵌入的时间序列数据,使用隐马尔可夫模型开发连续死亡风险预测模型:脓毒症案例研究。

Utilizing time series data embedded in electronic health records to develop continuous mortality risk prediction models using hidden Markov models: A sepsis case study.

机构信息

California State University, Northridge, Northridge, CA, USA.

Oklahoma State University, Stillwater, Stillwater, OK, USA.

出版信息

Stat Methods Med Res. 2020 Nov;29(11):3409-3423. doi: 10.1177/0962280220929045. Epub 2020 Jun 17.

Abstract

Continuous mortality risk monitoring is instrumental to manage a patient's care and to efficiently utilize the limited hospital resources. Due to incompleteness and irregularities of electronic health records (EHR), developing continuous mortality risk prediction using EHR data is a challenge. In this study, we propose a framework to continuously monitor mortality risk, and apply it to the real-world EHR data. The proposed method employs hidden Markov models (temporal technique) that take account of both the previous state of patient's health and the current value of clinical signs. Following the Sepsis-3 definition, we selected 3898 encounters of patients with suspected infection to compare the performance of temporal and non-temporal methods (Decision Tree (DT), Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM)). The area under receiver operating characteristics (AUROC) curve, sensitivity, specificity and G-mean were used as performance measures. On the selected data, the AUROC of the proposed temporal framework (0.87) is 9-12% greater than the nontemporal methods (DT: 0.78, NB: 0.79, SVM: 0.79, LR: 0.80 and RF: 0.80). The results also show that our model (G-mean=0.78) provides a better balance between sensitivity and specificity compared to clinically acceptable bed-side criteria (G-mean=0.71). The proposed framework leverages the longitudinal data available in EHR and performs better than the non-temporal methods. The proposed method facilitates information related to the time of change of the patient's health that may help practitioners to plan early and develop effective treatment strategies.

摘要

连续死亡率风险监测对于管理患者的护理和有效利用有限的医院资源非常重要。由于电子病历(EHR)的不完整性和不规则性,使用 EHR 数据开发连续死亡率风险预测是一个挑战。在本研究中,我们提出了一个框架来连续监测死亡率风险,并将其应用于真实的 EHR 数据。所提出的方法采用隐马尔可夫模型(时间技术),同时考虑患者健康的先前状态和临床体征的当前值。根据 Sepsis-3 定义,我们选择了 3898 例疑似感染患者的就诊记录,比较了时间和非时间方法(决策树(DT)、逻辑回归(LR)、朴素贝叶斯(NB)、随机森林(RF)和支持向量机(SVM))的性能。接收者操作特征(ROC)曲线下面积(AUROC)、敏感性、特异性和 G-均值被用作性能度量。在所选择的数据上,所提出的时间框架的 AUROC(0.87)比非时间方法(DT:0.78、NB:0.79、SVM:0.79、LR:0.80 和 RF:0.80)高 9-12%。结果还表明,与临床可接受的床边标准(G-mean=0.71)相比,我们的模型(G-mean=0.78)在敏感性和特异性之间提供了更好的平衡。所提出的框架利用 EHR 中可用的纵向数据,并且比非时间方法表现更好。所提出的方法提供了与患者健康变化时间相关的信息,这可能有助于临床医生及早计划并制定有效的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验