Suppr超能文献

从生命体征到脓毒症患者的临床结局:临床决策支持系统的机器学习基础。

From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system.

机构信息

Department of Biomedical Engineering, University of California, Davis, California, USA.

出版信息

J Am Med Inform Assoc. 2014 Mar-Apr;21(2):315-25. doi: 10.1136/amiajnl-2013-001815. Epub 2013 Aug 19.

Abstract

OBJECTIVE

To develop a decision support system to identify patients at high risk for hyperlactatemia based upon routinely measured vital signs and laboratory studies.

MATERIALS AND METHODS

Electronic health records of 741 adult patients at the University of California Davis Health System who met at least two systemic inflammatory response syndrome criteria were used to associate patients' vital signs, white blood cell count (WBC), with sepsis occurrence and mortality. Generative and discriminative classification (naïve Bayes, support vector machines, Gaussian mixture models, hidden Markov models) were used to integrate heterogeneous patient data and form a predictive tool for the inference of lactate level and mortality risk.

RESULTS

An accuracy of 0.99 and discriminability of 1.00 area under the receiver operating characteristic curve (AUC) for lactate level prediction was obtained when the vital signs and WBC measurements were analysed in a 24 h time bin. An accuracy of 0.73 and discriminability of 0.73 AUC for mortality prediction in patients with sepsis was achieved with only three features: median of lactate levels, mean arterial pressure, and median absolute deviation of the respiratory rate.

DISCUSSION

This study introduces a new scheme for the prediction of lactate levels and mortality risk from patient vital signs and WBC. Accurate prediction of both these variables can drive the appropriate response by clinical staff and thus may have important implications for patient health and treatment outcome.

CONCLUSIONS

Effective predictions of lactate levels and mortality risk can be provided with a few clinical variables when the temporal aspect and variability of patient data are considered.

摘要

目的

开发一种决策支持系统,根据常规测量的生命体征和实验室研究来识别高乳酸血症风险的患者。

材料与方法

使用加利福尼亚大学戴维斯健康系统的 741 名符合至少两项全身炎症反应综合征标准的成年患者的电子健康记录,将患者的生命体征、白细胞计数(WBC)与脓毒症的发生和死亡率相关联。生成和判别分类(朴素贝叶斯、支持向量机、高斯混合模型、隐马尔可夫模型)用于整合异质患者数据,并形成用于推断乳酸水平和死亡率风险的预测工具。

结果

当在 24 小时时间窗内分析生命体征和 WBC 测量值时,乳酸水平预测的准确性为 0.99,接收者操作特征曲线(AUC)的判别能力为 1.00。在脓毒症患者中,仅使用三个特征(乳酸水平中位数、平均动脉压和呼吸率的中位数绝对偏差)即可实现死亡率预测的准确性为 0.73,判别能力为 0.73 AUC。

讨论

本研究提出了一种从患者生命体征和 WBC 预测乳酸水平和死亡率风险的新方案。这两个变量的准确预测可以促使临床工作人员做出适当的反应,因此可能对患者的健康和治疗结果产生重要影响。

结论

当考虑患者数据的时间方面和可变性时,可以使用几个临床变量来提供乳酸水平和死亡率风险的有效预测。

相似文献

引用本文的文献

3
Age-defying swallowing.逆龄吞咽。
Front Aging. 2025 Apr 7;6:1510257. doi: 10.3389/fragi.2025.1510257. eCollection 2025.

本文引用的文献

8
Prediction of severe sepsis using SVM model.使用 SVM 模型预测严重脓毒症。
Adv Exp Med Biol. 2010;680:75-81. doi: 10.1007/978-1-4419-5913-3_9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验