Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095-1766, United States of America.
Phys Biol. 2020 Sep 23;17(6):065003. doi: 10.1088/1478-3975/ab9e59.
Different ways of calculating mortality during epidemics have yielded very different results, particularly during the current COVID-19 pandemic. For example, the 'CFR' has been interchangeably called the case fatality ratio, case fatality rate, and case fatality risk, often without standard mathematical definitions. The most commonly used CFR is the case fatality ratio, typically constructed using the estimated number of deaths to date divided by the estimated total number of confirmed infected cases to date. How does this CFR relate to an infected individual's probability of death? To explore such issues, we formulate both a survival probability model and an associated infection duration-dependent SIR model to define individual- and population-based estimates of dynamic mortality measures to show that neither of these are directly represented by the case fatality ratio. The key parameters that affect the dynamics of different mortality estimates are the incubation period and the time individuals were infected before confirmation of infection. Using data on the recent SARS-CoV-2 outbreaks, we estimate and compare the different dynamic mortality estimates and highlight their differences. Informed by our modeling, we propose more systematic methods to determine mortality during epidemic outbreaks and discuss sensitivity to confounding effects and uncertainties in the data arising from, e.g., undertesting and heterogeneous populations.
不同的流行病死亡率计算方法得出了非常不同的结果,尤其是在当前的 COVID-19 大流行期间。例如,“病死率”(CFR)曾被交替地称为病例死亡率、病例病死率和病例死亡率风险,通常没有标准的数学定义。最常用的 CFR 是病例死亡率,通常使用截至目前的估计死亡人数除以截至目前的估计总确诊感染人数来构建。这个 CFR 与受感染个体的死亡概率有何关系?为了探讨这些问题,我们制定了生存概率模型和相关的感染持续时间依赖性 SIR 模型,以定义个体和群体为基础的动态死亡率度量的估计值,以表明这些都不是由病死率直接表示的。影响不同死亡率估计动态的关键参数是潜伏期和个体在确认感染之前被感染的时间。使用最近 SARS-CoV-2 爆发的数据,我们估计和比较了不同的动态死亡率估计值,并强调了它们的差异。根据我们的模型,我们提出了更系统的方法来确定流行病爆发期间的死亡率,并讨论了对数据中混杂效应和不确定性的敏感性,这些数据源自例如检测不足和人群异质性。