Suppr超能文献

基于平扫 CT 图像的肝纤维化分期的深度残差网络模型。

Deep residual nets model for staging liver fibrosis on plain CT images.

机构信息

Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.

Institute of Advanced Research, Infervision, Beijing, China.

出版信息

Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1399-1406. doi: 10.1007/s11548-020-02206-y. Epub 2020 Jun 16.

Abstract

PURPOSE

The early diagnosis of liver fibrosis is crucial for the prevention of liver cirrhosis and liver cancer. As gold standard for staging liver fibrosis, liver biopsy is an invasive procedure that carries the risk of serious complications. The aim of this study was to evaluate the performance of the residual neural network (ResNet), a non-invasive methods, for staging liver fibrosis using plain CT images.

METHODS

This retrospective study involved 347 patients subjected to liver CT scanning and liver biopsy. For each patient, we selected three axial images adjacent to the puncture location in the eighth or ninth inter-space on the right side. After processing and enhancement (rotation, translation, and amplification), these images were used as input data for the ResNet model. The model used a fivefold cross-validation method. In each fold, the images of approximately 80% of the total sample size (278 patients) were used for training the ResNet model, the other 20% (69 patients) were used for testing the trained network, with the liver biopsy pathology results as gold standard. The proportion of patients in each fibrosis stage was equal for training and test groups. The final result was the mean of the fivefold cross-validation in the test group. The performance of the ResNet model was evaluated for the test group by receiver operating characteristic (ROC) analysis.

RESULTS

For the ResNet model, the area under the ROC curve (AUC) for assessing cirrhosis (F4), advanced fibrosis (F3 or higher), significant fibrosis (F2 or higher), and mild fibrosis (F1 or higher) was 0.97, 0.94, 0.90, and 0.91, respectively.

CONCLUSIONS

The ResNet model analysis of plain CT images exhibited high diagnostic efficiency for liver fibrosis staging. As a convenient, fast, and economical non-invasive diagnostic method, the ResNet model can be used to assist radiologists and clinicians in liver fibrosis evaluations.

摘要

目的

肝纤维化的早期诊断对于预防肝硬化和肝癌至关重要。肝活检作为肝纤维化分期的金标准,是一种有创性操作,存在严重并发症的风险。本研究旨在评估残差神经网络(ResNet)这一无创方法在使用平扫 CT 图像对肝纤维化分期的性能。

方法

本回顾性研究纳入了 347 例接受肝脏 CT 扫描和肝活检的患者。对于每位患者,我们选择右侧第 8 或第 9 肋间穿刺部位附近的 3 个轴位图像。对这些图像进行处理和增强(旋转、平移和放大)后,将其作为 ResNet 模型的输入数据。该模型采用五重交叉验证方法。在每重交叉验证中,大约 80%的总样本量(278 例患者)的图像用于训练 ResNet 模型,其余 20%(69 例患者)的图像用于测试训练好的网络,以肝活检病理结果为金标准。训练组和测试组中各纤维化分期的患者比例相等。最终结果是测试组中五重交叉验证的平均值。使用受试者工作特征(ROC)分析评估 ResNet 模型在测试组中的性能。

结果

对于 ResNet 模型,评估肝硬化(F4)、晚期纤维化(F3 或更高)、显著纤维化(F2 或更高)和轻度纤维化(F1 或更高)的 ROC 曲线下面积(AUC)分别为 0.97、0.94、0.90 和 0.91。

结论

ResNet 模型对平扫 CT 图像进行肝纤维化分期的分析具有较高的诊断效率。作为一种方便、快速且经济的非侵入性诊断方法,ResNet 模型可用于辅助放射科医生和临床医生进行肝纤维化评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验