Liu Ming, Fan Pu, Hu Qin, Russell Thomas P, Liu Yao
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, MA, 01003, USA.
Angew Chem Int Ed Engl. 2020 Oct 5;59(41):18131-18135. doi: 10.1002/anie.202004432. Epub 2020 Aug 13.
Self-doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3-dibromopropane (NDI-NI) or trans-1,4-dibromo-2-butene (NDI-CI) via quaternization polymerization. These NDI-based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene-based, non-fullerene-based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI-NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI-CI, affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air-stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics.
通过功能化萘二酰亚胺(NDI)与1,3 - 二溴丙烷(NDI - NI)或反式 - 1,4 - 二溴 - 2 - 丁烯(NDI - CI)经季铵化聚合反应,高效合成了自掺杂紫罗碱聚合物。这些基于NDI的紫罗碱聚合物是具有随机分子取向的通用夹层,在很宽的夹层厚度范围内提高了基于富勒烯、非富勒烯和三元有机太阳能电池(OSC)的效率,最高效率达16.9%。NDI - NI比NDI - CI表现出更高的界面偶极(Δ)、电导率和电子迁移率,从而使太阳能电池具有更高的效率。这些聚合物被证明能有效降低空气稳定金属的功函数(WF),并优化金属电极与有机半导体之间的接触,突出了它们克服电子注入和提取过程中的能量势垒以实现高效有机电子器件的能力。