Suppr超能文献

使用生成模型预测细胞对扰动的形态学反应。

Predicting cell morphological responses to perturbations using generative modeling.

作者信息

Palma Alessandro, Theis Fabian J, Lotfollahi Mohammad

机构信息

Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.

School of Computing, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Nat Commun. 2025 Jan 8;16(1):505. doi: 10.1038/s41467-024-55707-8.

Abstract

Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions. We show that IMPA accurately captures morphological and population-level changes of both seen and unseen perturbations on breast cancer and osteosarcoma cells. Additionally, IMPA accounts for batch effects and can model perturbations across various sources of technical variation, further enhancing its robustness in diverse experimental conditions. With the increasing availability of large-scale high-content imaging screens generated by academic and industrial consortia, we envision that IMPA will facilitate the analysis of microscopy data and enable efficient experimental design via in-silico perturbation prediction.

摘要

高通量筛选技术的进步使得通过高内涵显微镜探索丰富的表型读数成为可能,加速了基于表型的药物发现进程。然而,由于对干扰因素的采样不完整以及实验之间存在技术差异,分析大规模复杂的高内涵成像筛选仍然具有挑战性。为了解决这些缺点,我们提出了图像扰动自动编码器(IMPA),这是一种生成式风格迁移模型,可预测基因和化学干预中扰动的形态变化。我们表明,IMPA能够准确捕捉乳腺癌和骨肉瘤细胞上可见和不可见扰动的形态及群体水平变化。此外,IMPA考虑了批次效应,并且可以对各种技术变异来源的扰动进行建模,进一步增强了其在不同实验条件下的稳健性。随着学术和工业联盟生成的大规模高内涵成像筛选数据越来越多,我们设想IMPA将有助于显微镜数据分析,并通过计算机模拟扰动预测实现高效的实验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7b/11711326/99d9f4290813/41467_2024_55707_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验