The Research Center for Brain-Inspired Intelligence & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, 100190, China.
The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
Sci Data. 2020 Jun 19;7(1):191. doi: 10.1038/s41597-020-0535-2.
Motor imagery (MI) is one of the important brain-computer interface (BCI) paradigms, which can be used to control peripherals without external stimulus. Imagining the movements of different joints of the same limb allows intuitive control of the outer devices. In this report, we describe an open access multi-subject dataset for MI of different joints from the same limb. This experiment collected data from twenty-five healthy subjects on three tasks: 1) imagining the movement of right hand, 2) imagining the movement of right elbow, and 3) keeping resting with eyes open, which results in a total of 22,500 trials. The dataset provided includes data of three stages: 1) raw recorded data, 2) pre-processed data after operations such as artifact removal, and 3) trial data that can be directly used for feature extraction and classification. Different researchers can reuse the dataset according to their needs. We expect that this dataset will facilitate the analysis of brain activation patterns of the same limb and the study of decoding techniques for MI.
运动想象(MI)是一种重要的脑机接口(BCI)范式,可用于在没有外部刺激的情况下控制外围设备。想象同一肢体的不同关节的运动可以直观地控制外部设备。在本报告中,我们描述了一个用于来自同一肢体的不同关节的 MI 的开放访问多主体数据集。该实验从 25 名健康受试者收集了三个任务的数据:1)想象右手的运动,2)想象右手肘的运动,3)睁眼休息,总共产生了 22500 次试验。提供的数据集包括三个阶段的数据:1)原始记录数据,2)经过去除伪影等操作后的预处理数据,3)可直接用于特征提取和分类的试验数据。不同的研究人员可以根据自己的需要重复使用该数据集。我们希望该数据集将有助于分析同一肢体的大脑激活模式和 MI 的解码技术研究。