Yi Weibo, Chen Jiaming, Wang Dan, Hu Xinkang, Xu Meng, Li Fangda, Wu Shuhan, Qian Jin
Beijing Institute of Mechanical Equipment, Beijing, 100854, China.
College of Computer Science, Beijing University of Technology, Beijing, 100124, China.
Sci Data. 2025 Jun 6;12(1):953. doi: 10.1038/s41597-025-05286-0.
As one of the important brain-computer interface (BCI) paradigms, motor imagery (MI) enables the control of external devices via identification of motor intention by decoding the features of Electroencephalography (EEG). Movement imagination of multi-types of joints from the same limb allows the development of more accurate and intuitive BCI systems. In this work, we reported an open dataset including EEG and functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects performing eight MI tasks from four types of joints including hand open/close, wrist flexion/extension, wrist abduction/adduction, elbow pronation/supination, elbow flexion/extension, shoulder pronation/supination, shoulder abduction/adduction, and shoulder flexion/extension, resulting in a total of 5760 trials. The validity of multi-modal data was verified both from the EEG/fNIRS activation patterns and the classification performance. It is expected that this dataset will facilitate the development and innovation of decoding algorithms for MI of multi-types of joints based on multi-modal EEG-fNIRS data.
作为重要的脑机接口(BCI)范式之一,运动想象(MI)通过解码脑电图(EEG)特征来识别运动意图,从而实现对外部设备的控制。同一肢体多种关节的运动想象有助于开发更精确、直观的BCI系统。在这项工作中,我们报告了一个开放数据集,该数据集包含18名受试者在执行来自四种关节(包括手的张开/闭合、手腕的弯曲/伸展、手腕的外展/内收、肘部的旋前/旋后、肘部的弯曲/伸展、肩部的旋前/旋后、肩部的外展/内收以及肩部的弯曲/伸展)的八项MI任务时的脑电图和功能性近红外光谱(fNIRS)记录,总共产生了5760次试验。多模态数据的有效性通过脑电图/fNIRS激活模式和分类性能得到了验证。预计该数据集将促进基于多模态脑电图-fNIRS数据的多种关节运动想象解码算法的开发与创新。