Suppr超能文献

利用面板现状数据开发和评估风险预测模型。

Developing and evaluating risk prediction models with panel current status data.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Department of Statistics, School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Biometrics. 2021 Jun;77(2):599-609. doi: 10.1111/biom.13317. Epub 2020 Jul 8.

Abstract

Panel current status data arise frequently in biomedical studies when the occurrence of a particular clinical condition is only examined at several prescheduled visit times. Existing methods for analyzing current status data have largely focused on regression modeling based on commonly used survival models such as the proportional hazards model and the accelerated failure time model. However, these procedures have the limitations of being difficult to implement and performing sub-optimally in relatively small sample sizes. The performance of these procedures is also unclear under model misspecification. In addition, no methods currently exist to evaluate the prediction performance of estimated risk models with panel current status data. In this paper, we propose a simple estimator under a general class of nonparametric transformation (NPT) models by fitting a logistic regression working model and demonstrate that our proposed estimator is consistent for the NPT model parameter up to a scale multiplier. Furthermore, we propose nonparametric estimators for evaluating the prediction performance of the risk score derived from model fitting, which is valid regardless of the adequacy of the fitted model. Extensive simulation results suggest that our proposed estimators perform well in finite samples and the regression parameter estimators outperform existing estimators under various scenarios. We illustrate the proposed procedures using data from the Framingham Offspring Study.

摘要

当仅在几个预定的访视时间检查特定临床情况的发生时,生物医学研究中经常会出现面板数据现状。现有的分析现状数据的方法主要集中在基于常用生存模型(如比例风险模型和加速失效时间模型)的回归建模上。然而,这些程序存在难以实施和在相对较小的样本量下表现不佳的局限性。在模型误设定下,这些程序的性能也不清楚。此外,目前没有方法可以评估面板数据现状的估计风险模型的预测性能。在本文中,我们通过拟合逻辑回归工作模型,在一般的非参数变换 (NPT) 模型类下提出了一个简单的估计器,并证明我们提出的估计器对于 NPT 模型参数是一致的,直到一个比例乘数。此外,我们提出了用于评估从模型拟合得出的风险评分的预测性能的非参数估计器,无论拟合模型是否充分,该估计器都是有效的。广泛的模拟结果表明,我们提出的估计器在有限样本中表现良好,并且在各种情况下,回归参数估计器都优于现有估计器。我们使用弗雷明汉后代研究的数据来说明所提出的程序。

相似文献

8
A class of semiparametric cure models with current status data.一类具有当前状态数据的半参数治愈模型。
Lifetime Data Anal. 2019 Jan;25(1):26-51. doi: 10.1007/s10985-018-9420-0. Epub 2018 Feb 8.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验