Suppr超能文献

基于新的人群死亡率监测方法的初步发现:一项描述性研究。

Initial findings from a novel population-based child mortality surveillance approach: a descriptive study.

机构信息

Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.

ISGlobal, Hospital Clínic, University of Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Pediatrics Department, Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.

出版信息

Lancet Glob Health. 2020 Jul;8(7):e909-e919. doi: 10.1016/S2214-109X(20)30205-9.

Abstract

BACKGROUND

Sub-Saharan Africa and south Asia contributed 81% of 5·9 million under-5 deaths and 77% of 2·6 million stillbirths worldwide in 2015. Vital registration and verbal autopsy data are mainstays for the estimation of leading causes of death, but both are non-specific and focus on a single underlying cause. We aimed to provide granular data on the contributory causes of death in stillborn fetuses and in deceased neonates and children younger than 5 years, to inform child mortality prevention efforts.

METHODS

The Child Health and Mortality Prevention Surveillance (CHAMPS) Network was established at sites in seven countries (Baliakandi, Bangladesh; Harar and Kersa, Ethiopia; Siaya and Kisumu, Kenya; Bamako, Mali; Manhiça, Mozambique; Bombali, Sierra Leone; and Soweto, South Africa) to collect standardised, population-based, longitudinal data on under-5 mortality and stillbirths in sub-Saharan Africa and south Asia, to improve the accuracy of determining causes of death. Here, we analysed data obtained in the first 2 years after the implementation of CHAMPS at the first five operational sites, during which surveillance and post-mortem diagnostics, including minimally invasive tissue sampling (MITS), were used. Data were abstracted from all available clinical records of deceased children, and relevant maternal health records were also extracted for stillbirths and neonatal deaths, to incorporate reported pregnancy or delivery complications. Expert panels followed standardised procedures to characterise causal chains leading to death, including underlying, intermediate (comorbid or antecedent causes), and immediate causes of death for stillbirths, neonatal deaths, and child (age 1-59 months) deaths.

FINDINGS

Between Dec 10, 2016, and Dec 31, 2018, MITS procedures were implemented at five sites in Mozambique, South Africa, Kenya, Mali, and Bangladesh. We screened 2385 death notifications for inclusion eligibility, following which 1295 families were approached for consent; consent was provided for MITS by 963 (74%) of 1295 eligible cases approached. At least one cause of death was identified in 912 (98%) of 933 cases (180 stillbirths, 449 neonatal deaths, and 304 child deaths); two or more conditions were identified in the causal chain for 585 (63%) of 933 cases. The most common underlying causes of stillbirth were perinatal asphyxia or hypoxia (130 [72%] of 180 stillbirths) and congenital infection or sepsis (27 [15%]). The most common underlying causes of neonatal death were preterm birth complications (187 [42%] of 449 neonatal deaths), perinatal asphyxia or hypoxia (98 [22%]), and neonatal sepsis (50 [11%]). The most common underlying causes of child deaths were congenital birth defects (39 [13%] of 304 deaths), lower respiratory infection (37 [12%]), and HIV (35 [12%]). In 503 (54%) of 933 cases, at least one contributory pathogen was identified. Cytomegalovirus, Escherichia coli, group B Streptococcus, and other infections contributed to 30 (17%) of 180 stillbirths. Among neonatal deaths with underlying prematurity, 60% were precipitated by other infectious causes. Of the 275 child deaths with infectious causes, the most common contributory pathogens were Klebsiella pneumoniae (86 [31%]), Streptococcus pneumoniae (54 [20%]), HIV (40 [15%]), and cytomegalovirus (34 [12%]), and multiple infections were common. Lower respiratory tract infection contributed to 174 (57%) of 304 child deaths.

INTERPRETATION

Cause of death determination using MITS enabled detailed characterisation of contributing conditions. Global estimates of child mortality aetiologies, which are currently based on a single syndromic cause for each death, will be strengthened by findings from CHAMPS. This approach adds specificity and provides a more complete overview of the chain of events leading to death, highlighting multiple potential interventions to prevent under-5 mortality and stillbirths.

FUNDING

Bill & Melinda Gates Foundation.

摘要

背景

2015 年,撒哈拉以南非洲和南亚占全球 590 万 5 岁以下儿童死亡人数的 81%,260 万死产儿的 77%。生命登记和死因推断数据是主要死因估计的基础,但两者都不具体,只关注单一的根本原因。我们旨在提供详细数据,说明死产儿和死亡新生儿及 5 岁以下儿童的死亡原因,为儿童死亡率预防工作提供信息。

方法

在撒哈拉以南非洲和南亚的 7 个国家(孟加拉国的巴里亚坎迪;埃塞俄比亚的哈拉尔和克尔萨;肯尼亚的锡亚亚和基苏木;马里的巴马科;莫桑比克的马希奇;塞拉利昂的邦巴利;南非的索韦托)建立儿童健康与死亡率监测预防网络(CHAMPS),以收集儿童死亡和死产的标准化、基于人群、纵向数据,提高死因判断的准确性。在此,我们分析了前 5 个运作地点在实施 CHAMPS 的头 2 年获得的数据,在此期间使用了监测和死后诊断,包括微创组织取样(MITS)。从所有死亡儿童的现有临床记录中提取数据,并为死产儿和新生儿死亡提取相关的孕产妇健康记录,以纳入报告的妊娠或分娩并发症。专家小组遵循标准程序,描述导致死亡的因果链,包括死产、新生儿死亡和 1-59 月龄儿童死亡的根本、中间(合并或前置原因)和直接原因。

结果

2016 年 12 月 10 日至 2018 年 12 月 31 日,莫桑比克、南非、肯尼亚、马里和孟加拉国的五个地点实施了 MITS 程序。我们对 2385 份死亡通知进行了纳入资格筛查,随后有 1295 个家庭被邀请同意;在 1295 个符合条件的病例中,有 963 个(74%)家庭同意进行 MITS。在 933 例病例中,至少确定了一个死因;在 933 例病例中,有 912 例(98%)确定了死因;在 933 例病例中,有 585 例(63%)确定了两个或更多的病因链。死产的最常见根本原因是围产期窒息或缺氧(180 例死产中 130 例[72%])和先天性感染或败血症(27 例[15%])。新生儿死亡的最常见根本原因是早产并发症(449 例新生儿死亡中 187 例[42%])、围产期窒息或缺氧(98 例[22%])和新生儿败血症(50 例[11%])。儿童死亡的最常见根本原因是先天性出生缺陷(304 例死亡中 39 例[13%])、下呼吸道感染(37 例[12%])和艾滋病毒(35 例[12%])。在 503 例(54%)病例中,至少确定了一种病原体。巨细胞病毒、大肠杆菌、B 组链球菌和其他感染导致 180 例死产中的 30 例(17%)。在根本原因是早产的新生儿死亡中,60%是由其他传染性原因引起的。在 275 例有传染性病因的儿童死亡中,最常见的病原体是肺炎克雷伯菌(86 例[31%])、肺炎链球菌(54 例[20%])、艾滋病毒(40 例[15%])和巨细胞病毒(34 例[12%]),且多种病原体感染很常见。下呼吸道感染导致 304 例儿童死亡中的 174 例(57%)。

解释

使用 MITS 确定死因,可以详细描述促成因素的情况。目前,全球儿童死亡率病因估计是基于每个死亡的单一综合征原因,CHAMPS 的发现将加强这些估计。这种方法增加了特异性,并提供了更完整的死亡事件链概述,突出了多种潜在的干预措施,以预防 5 岁以下儿童死亡和死产。

资助

比尔及梅琳达·盖茨基金会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b86/7303945/d5d2607e9da5/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验