Suppr超能文献

通过数据科学推进伤害和暴力预防。

Advancing injury and violence prevention through data science.

机构信息

Division of Injury Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341 United States.

Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Atlanta, GA 30341 United States.

出版信息

J Safety Res. 2020 Jun;73:189-193. doi: 10.1016/j.jsr.2020.02.018. Epub 2020 Mar 10.

Abstract

INTRODUCTION

The volume of new data that is created each year relevant to injury and violence prevention continues to grow. Furthermore, the variety and complexity of the types of useful data has also progressed beyond traditional, structured data. In order to more effectively advance injury research and prevention efforts, the adoption of data science tools, methods, and techniques, such as natural language processing and machine learning, by the field of injury and violence prevention is imperative.

METHOD

The Centers for Disease Control and Prevention's (CDC) National Center for Injury Prevention and Control has conducted numerous data science pilot projects and recently developed a Data Science Strategy. This strategy includes goals on expanding the availability of more timely data systems, improving rapid identification of health threats and responses, increasing access to accurate health information and preventing misinformation, improving data linkages, expanding data visualization efforts, and increasing efficiency of analytic and scientific processes for injury and violence, among others.

RESULTS

To achieve these goals, CDC is expanding its data science capacity in the areas of internal workforce, partnerships, and information technology infrastructure. Practical Application: These efforts will expand the use of data science approaches to improve how CDC and the field address ongoing injury and violence priorities and challenges.

摘要

简介

每年与伤害和暴力预防相关的新数据量持续增长。此外,有用数据的类型和复杂性也超出了传统的结构化数据。为了更有效地推进伤害研究和预防工作,伤害和暴力预防领域必须采用数据科学工具、方法和技术,如自然语言处理和机器学习。

方法

疾病控制与预防中心(CDC)的国家伤害预防与控制中心已经进行了许多数据科学试点项目,并最近制定了一项数据科学战略。该战略包括扩大更及时的数据系统的可用性、改善对健康威胁和应对措施的快速识别、增加获取准确健康信息和防止错误信息的机会、改善数据链接、扩大数据可视化工作、以及提高伤害和暴力的分析和科学流程的效率等目标。

结果

为了实现这些目标,CDC 正在扩大其数据科学能力,包括内部劳动力、伙伴关系和信息技术基础设施。

实际应用

这些努力将扩大数据科学方法的使用,以改善 CDC 和该领域如何应对持续的伤害和暴力优先事项和挑战。

相似文献

1
Advancing injury and violence prevention through data science.通过数据科学推进伤害和暴力预防。
J Safety Res. 2020 Jun;73:189-193. doi: 10.1016/j.jsr.2020.02.018. Epub 2020 Mar 10.
2
Saving Lives and Protecting People From Injuries and Violence.拯救生命,保护人们免受伤害和暴力。
Ann Emerg Med. 2016 Aug;68(2):230-2. doi: 10.1016/j.annemergmed.2016.02.031. Epub 2016 Mar 29.
4
The future of injury and violence prevention: where are we going?伤害与暴力预防的未来:我们将走向何方?
J Safety Res. 2012 Sep;43(4):231-2. doi: 10.1016/j.jsr.2012.08.001. Epub 2012 Aug 18.
6
The Power of Academic-Practitioner Collaboration to Enhance Science and Practice Integration: Injury and Violence Prevention Case Studies.学术从业者合作促进科学与实践融合的力量:伤害与暴力预防案例研究
J Public Health Manag Pract. 2018 Jan/Feb;24 Suppl 1 Suppl, Injury and Violence Prevention(Suppl 1 INJURY AND VIOLENCE PREVENTION):S67-S74. doi: 10.1097/PHH.0000000000000675.
10
State Injury Programs' Response to the Opioid Epidemic: The Role of CDC's Core Violence and Injury Prevention Program.各州伤害项目对阿片类药物流行的应对措施:美国疾病控制与预防中心核心暴力与伤害预防项目的作用
J Public Health Manag Pract. 2018 Jan/Feb;24 Suppl 1 Suppl, Injury and Violence Prevention(Suppl 1 INJURY AND VIOLENCE PREVENTION):S23-S31. doi: 10.1097/PHH.0000000000000704.

本文引用的文献

4
Misinformation as a Misunderstood Challenge to Public Health.错误信息:对公共卫生的一种被误解的挑战
Am J Prev Med. 2019 Aug;57(2):282-285. doi: 10.1016/j.amepre.2019.03.009. Epub 2019 Jun 24.
7
Ensuring Fairness in Machine Learning to Advance Health Equity.确保机器学习的公正性,以促进健康公平。
Ann Intern Med. 2018 Dec 18;169(12):866-872. doi: 10.7326/M18-1990. Epub 2018 Dec 4.
8
Proportion of Violent Injuries Unreported to Law Enforcement.未向执法部门报告的暴力伤害事件比例。
JAMA Intern Med. 2019 Jan 1;179(1):111-112. doi: 10.1001/jamainternmed.2018.5139.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验