Suppr超能文献

针对 SARS-CoV-2 核衣壳磷酸蛋白 RNA 结合域的潜在抑制剂的虚拟筛选和动力学研究。

Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2.

机构信息

Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India.

Department of Pharmacology, College of Medicine, Shaqra University, Shaqra, Kingdom of Saudi Arabia.

出版信息

J Biomol Struct Dyn. 2021 Aug;39(12):4433-4448. doi: 10.1080/07391102.2020.1778536. Epub 2020 Jun 22.

Abstract

The emergence of the coronavirus disease-2019 pandemic has led to an outbreak in the world. The SARS-CoV-2 is seventh and latest in coronavirus family with unique exonucleases for repairing any mismatches in newly transcribed genetic material. Therefore, drugs with novel additional mechanisms are required to simultaneously target and eliminate the virus. Thus, a newly deciphered N protein is taken as a target that belongs to SARS-CoV-2. They play a vital role in RNA transcription, viral replication and new virion formation. This study used virtual screening, molecular modeling and docking of the 8987 ligands from Asinex and PubChem databases against this novel target protein. Three hotspot sites having DScore ≥1 (Site 1, Site 2 and Site 3) for ligand binding were selected. Subsequently, high throughput screening, standard precision and extra precision docking process and molecular dynamics concluded three best drugs from two libraries. Two antiviral moieties from Asinex databases (5817 and 6799) have docking scores of -10.29 and -10.156; along with their respective free binding energies (Δ bind) of -51.96 and -64.36 on Site 3. The third drug, Zidovudine, is from PubChem database with docking scores of -9.75 with its binding free energies (Δ bind) of -59.43 on Site 3. The RMSD and RMSF were calculated for all the three drugs through molecular dynamics simulation studies for 50 ns. Zidovudine shows a very stable interaction with fluctuation starting at 2.4 Å on 2 ns and remained stable at 3 Å from 13 to 50 ns. Thus, paving the way for further biological validation as a potential treatment.Communicated by Ramaswamy H. Sarma.

摘要

新型冠状病毒疾病 2019 大流行的出现导致了世界范围内的疫情爆发。SARS-CoV-2 是冠状病毒家族中的第七种也是最新一种,具有独特的外切核酸酶,用于修复新转录遗传物质中的任何错配。因此,需要具有新型附加机制的药物同时靶向并消除病毒。因此,新解码的 N 蛋白被视为一种靶点,属于 SARS-CoV-2。它们在 RNA 转录、病毒复制和新病毒形成中发挥着至关重要的作用。本研究使用虚拟筛选、分子建模和对接来自 Asinex 和 PubChem 数据库的 8987 种配体针对这一新目标蛋白。选择了三个具有 DScore≥1 的热点结合位点(位点 1、位点 2 和位点 3)。随后,高通量筛选、标准精度和额外精度对接过程和分子动力学从两个文库中确定了三种最佳药物。来自 Asinex 数据库的两种抗病毒药物(5817 和 6799)具有-10.29 和-10.156 的对接评分;在 Site 3 上,各自的自由结合能(Δbind)为-51.96 和-64.36。第三种药物齐多夫定来自 PubChem 数据库,对接评分为-9.75,其结合自由能(Δbind)为-59.43,位于 Site 3。通过分子动力学模拟研究,对所有三种药物进行了 50 ns 的 RMSD 和 RMSF 计算。齐多夫定与 Site 3 上 2 ns 时的波动开始于 2.4 Å 的非常稳定的相互作用,并在 13 至 50 ns 期间保持在 3 Å 的稳定状态。因此,为进一步的生物学验证铺平了道路,作为一种潜在的治疗方法。由 Ramaswamy H. Sarma 传达。

相似文献

1
Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2.
J Biomol Struct Dyn. 2021 Aug;39(12):4433-4448. doi: 10.1080/07391102.2020.1778536. Epub 2020 Jun 22.
2
Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2.
J Biomol Struct Dyn. 2021 Oct;39(17):6617-6632. doi: 10.1080/07391102.2020.1796812. Epub 2020 Jul 25.
3
5
Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations.
J Biomol Struct Dyn. 2022 Apr;40(6):2430-2443. doi: 10.1080/07391102.2020.1839563. Epub 2020 Nov 3.
8
Plant-derived active compounds as a potential nucleocapsid protein inhibitor of SARS-CoV-2: an study.
J Biomol Struct Dyn. 2023 Jul;41(10):4770-4785. doi: 10.1080/07391102.2022.2072951. Epub 2022 May 9.
9
In silico evaluation of the inhibitory potential of nucleocapsid inhibitors of SARS-CoV-2: a binding and energetic perspective.
J Biomol Struct Dyn. 2023 Nov;41(19):9797-9807. doi: 10.1080/07391102.2022.2146752. Epub 2022 Nov 15.

引用本文的文献

1
Discovering broad-spectrum inhibitors for SARS-CoV-2 variants: a cheminformatics and biophysical approach targeting the main protease.
Front Pharmacol. 2025 Feb 5;16:1459581. doi: 10.3389/fphar.2025.1459581. eCollection 2025.
2
SARS-CoV-2 drug resistance and therapeutic approaches.
Heliyon. 2025 Jan 15;11(2):e41980. doi: 10.1016/j.heliyon.2025.e41980. eCollection 2025 Jan 30.
3
SARS-CoV-2-induced phosphorylation and its pharmacotherapy backed by artificial intelligence and machine learning.
Future Sci OA. 2024 May 15;10(1):FSO917. doi: 10.2144/fsoa-2023-0112. eCollection 2024.
4
Effectiveness of Drug Repurposing and Natural Products Against SARS-CoV-2: A Comprehensive Review.
Clin Pharmacol. 2024 Jan 4;16:1-25. doi: 10.2147/CPAA.S429064. eCollection 2024.
5
Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study.
3 Biotech. 2023 Jun;13(6):174. doi: 10.1007/s13205-023-03595-y. Epub 2023 May 10.
7
Investigation of the effects of -Acetylglucosamine on the stability of the spike protein in SARS-CoV-2 by molecular dynamics simulations.
Comput Theor Chem. 2023 Apr;1222:114049. doi: 10.1016/j.comptc.2023.114049. Epub 2023 Feb 1.
9
Multiformin-Type Azaphilones Prevent SARS-CoV-2 Binding to ACE2 Receptor.
Cells. 2022 Dec 25;12(1):83. doi: 10.3390/cells12010083.
10
Computational biophysics approach towards the discovery of multi-kinase blockers for the management of MAPK pathway dysregulation.
Mol Divers. 2023 Oct;27(5):2093-2110. doi: 10.1007/s11030-022-10545-y. Epub 2022 Oct 19.

本文引用的文献

1
Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein.
PLoS Pathog. 2020 Dec 2;16(12):e1009100. doi: 10.1371/journal.ppat.1009100. eCollection 2020 Dec.
2
Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening.
J Biomol Struct Dyn. 2021 Jul;39(11):3924-3933. doi: 10.1080/07391102.2020.1772885. Epub 2020 Jun 2.
3
Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: an based approach.
J Biomol Struct Dyn. 2021 Jul;39(10):3802-3811. doi: 10.1080/07391102.2020.1768902. Epub 2020 May 25.
4
Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent.
J Biomol Struct Dyn. 2021 Jul;39(10):3605-3614. doi: 10.1080/07391102.2020.1768150. Epub 2020 May 20.
5
Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach.
J Biomol Struct Dyn. 2021 Jul;39(10):3662-3680. doi: 10.1080/07391102.2020.1768151. Epub 2020 May 20.
6
Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites.
Acta Pharm Sin B. 2020 Jul;10(7):1228-1238. doi: 10.1016/j.apsb.2020.04.009. Epub 2020 Apr 20.
7
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.
Nature. 2020 Jul;583(7816):459-468. doi: 10.1038/s41586-020-2286-9. Epub 2020 Apr 30.
8
A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2.
J Biomol Struct Dyn. 2021 Jun;39(9):3213-3224. doi: 10.1080/07391102.2020.1761883. Epub 2020 May 12.
9
Natural products may interfere with SARS-CoV-2 attachment to the host cell.
J Biomol Struct Dyn. 2021 Jun;39(9):3194-3203. doi: 10.1080/07391102.2020.1761881. Epub 2020 May 5.
10
SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an perspective.
J Biomol Struct Dyn. 2021 Jun;39(9):3204-3212. doi: 10.1080/07391102.2020.1761882. Epub 2020 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验