Suppr超能文献

生殖细胞肿瘤数据模型和数据共享库的建立。

Development of a Data Model and Data Commons for Germ Cell Tumors.

机构信息

Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX.

Keck School of Medicine, University of Southern California, Los Angeles, CA.

出版信息

JCO Clin Cancer Inform. 2020 Jun;4:555-566. doi: 10.1200/CCI.20.00025.

Abstract

Germ cell tumors (GCTs) are considered a rare disease but are the most common solid tumors in adolescents and young adults, accounting for 15% of all malignancies in this age group. The rarity of GCTs in some groups, particularly children, has impeded progress in treatment and biologic understanding. The most effective GCT research will result from the interrogation of data sets from historical and prospective trials across institutions. However, inconsistent use of terminology among groups, different sample-labeling rules, and lack of data standards have hampered researchers' efforts in data sharing and across-study validation. To overcome the low interoperability of data and facilitate future clinical trials, we worked with the Malignant Germ Cell International Consortium (MaGIC) and developed a GCT clinical data model as a uniform standard to curate and harmonize GCT data sets. This data model will also be the standard for prospective data collection in future trials. Using the GCT data model, we developed a GCT data commons with data sets from both MaGIC and public domains as an integrated research platform. The commons supports functions, such as data query, management, sharing, visualization, and analysis of the harmonized data, as well as patient cohort discovery. This GCT data commons will facilitate future collaborative research to advance the biologic understanding and treatment of GCTs. Moreover, the framework of the GCT data model and data commons will provide insights for other rare disease research communities into developing similar collaborative research platforms.

摘要

生殖细胞肿瘤(GCT)被认为是一种罕见病,但却是青少年和年轻成人中最常见的实体肿瘤,占该年龄段所有恶性肿瘤的 15%。由于某些群体(特别是儿童)中 GCT 的罕见性,阻碍了治疗和生物学理解方面的进展。最有效的 GCT 研究将来自对机构间历史和前瞻性试验数据集的质询。然而,不同群体之间术语使用不一致、样本标记规则不同以及缺乏数据标准,阻碍了研究人员在数据共享和跨研究验证方面的努力。为了克服数据的低互操作性并促进未来的临床试验,我们与恶性生殖细胞国际联合会(MaGIC)合作,开发了 GCT 临床数据模型作为统一标准,以管理和协调 GCT 数据集。该数据模型也将成为未来试验中前瞻性数据收集的标准。我们使用 GCT 数据模型,从 MaGIC 和公共领域开发了一个 GCT 数据共享库,作为一个集成的研究平台。该共享库支持对协调数据进行数据查询、管理、共享、可视化和分析,以及患者队列发现等功能。这个 GCT 数据共享库将促进未来的合作研究,以推进 GCT 的生物学理解和治疗。此外,GCT 数据模型和数据共享库的框架将为其他罕见病研究团体提供开发类似合作研究平台的思路。

相似文献

7
Children's Oncology Group's 2023 blueprint for research: Germ cell tumors.儿童肿瘤学组 2023 年研究蓝图:生殖细胞肿瘤。
Pediatr Blood Cancer. 2023 Sep;70 Suppl 6(Suppl 6):e30562. doi: 10.1002/pbc.30562. Epub 2023 Jul 14.
8
New insights into germ cell tumor genomics.生殖细胞肿瘤基因组学的新见解。
Andrology. 2019 Jul;7(4):507-515. doi: 10.1111/andr.12616. Epub 2019 Mar 21.
9
Clinical Challenges in the Management of Malignant Ovarian Germ Cell Tumours.恶性卵巢生殖细胞肿瘤的治疗难点。
Int J Environ Res Public Health. 2023 Jun 9;20(12):6089. doi: 10.3390/ijerph20126089.

本文引用的文献

2
Cancer statistics, 2019.癌症统计数据,2019 年。
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
9
Second malignant neoplasms and cardiovascular disease following radiotherapy.放疗后继发第二恶性肿瘤和心血管疾病。
J Natl Cancer Inst. 2012 Mar 7;104(5):357-70. doi: 10.1093/jnci/djr533. Epub 2012 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验