Jamshidi Parastoo, Aristizabal Miren, Kong Weihuan, Villapun Victor, Cox Sophie C, Grover Liam M, Attallah Moataz M
School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, UK.
Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastián, Spain.
Materials (Basel). 2020 Jun 22;13(12):2813. doi: 10.3390/ma13122813.
One of the main challenges in additive manufacturing (AM) of medical implants for the treatment of bone tissue defects is to optimise the mechanical and biological performance. The use of post-processing can be a necessity to improve the physical properties of customised AM processed implants. In this study, Ti-6Al-4V coupons were manufactured using selective laser melting (SLM) in two build orientations (vertical and horizontal) and subsequently post-processed using combinations of hot isostatic pressing (HIP), sandblasting (SB), polishing (PL) and chemical etching (CE). The effect of the different post-manufacturing strategies on the tensile and fatigue performance of the SLMed parts was investigated and rationalised by observing the surface topography. Vertically built samples showed higher yield strength (YS) and ultimate tensile strength (UTS) than the horizontal samples, increasing from 760.9 ± 22.3 MPa and 961.3 ± 50.2 MPa in the horizontal condition to 820.09 ± 16.5 MPa and 1006.7 ± 6.3 MPa in the vertical condition, respectively. After the HIP treatment, the ductility was substantially improved in both orientations; by 2.1 and 2.9 folds in the vertical and horizontal orientations, respectively. The vertically built samples demonstrated a superior ductility of 22% following HIP and polishing. Furthermore, chemical etching was found to be the most effective surface post-processing treatment to improve the fatigue performance after HIP, achieving the highest run-out strength of 450 MPa. Most importantly, chemical etching after HIP enhanced the cellular affinity of the surface, in addition to its good fatigue performance, making it a promising post-processing approach for bone implants where tissue integration is needed.
用于治疗骨组织缺损的医用植入物增材制造(AM)的主要挑战之一是优化其机械性能和生物学性能。后处理对于改善定制增材制造工艺加工的植入物的物理性能可能是必要的。在本研究中,采用选择性激光熔化(SLM)技术在两种构建方向(垂直和水平)制造了Ti-6Al-4V试样,随后通过热等静压(HIP)、喷砂(SB)、抛光(PL)和化学蚀刻(CE)的组合进行后处理。通过观察表面形貌,研究并阐释了不同后制造策略对选择性激光熔化部件拉伸和疲劳性能的影响。垂直构建的试样比水平构建的试样具有更高的屈服强度(YS)和极限抗拉强度(UTS),水平构建试样的屈服强度和极限抗拉强度分别为760.9±22.3MPa和961.3±50.2MPa,垂直构建试样的屈服强度和极限抗拉强度分别提高到820.09±16.5MPa和1006.7±6.3MPa。经过热等静压处理后,两个方向的延展性都得到了显著改善;垂直方向和水平方向的延展性分别提高了2.1倍和2.9倍。垂直构建的试样在经过热等静压和抛光处理后,延展性达到了22%,表现优异。此外,发现化学蚀刻是热等静压处理后改善疲劳性能最有效的表面后处理方法,实现了最高450MPa的疲劳极限强度。最重要的是,热等静压后的化学蚀刻不仅具有良好的疲劳性能,还增强了表面的细胞亲和力,使其成为需要组织整合的骨植入物一种很有前景的后处理方法。