Suppr超能文献

探究细菌疗法对无血管肿瘤的物理效应。

Investigating the Physical Effects in Bacterial Therapies for Avascular Tumors.

作者信息

Mascheroni Pietro, Meyer-Hermann Michael, Hatzikirou Haralampos

机构信息

Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infection Research, Braunschweig, Germany.

Centre for Individualized Infection Medicine, Hannover, Germany.

出版信息

Front Microbiol. 2020 Jun 4;11:1083. doi: 10.3389/fmicb.2020.01083. eCollection 2020.

Abstract

Tumor-targeting bacteria elicit anticancer effects by infiltrating hypoxic regions, releasing toxic agents and inducing immune responses. Although current research has largely focused on the influence of chemical and immunological aspects on the mechanisms of bacterial therapy, the impact of physical effects is still elusive. Here, we propose a mathematical model for the anti-tumor activity of bacteria in avascular tumors that takes into account the relevant chemo-mechanical effects. We consider a time-dependent administration of bacteria and analyze the impact of bacterial chemotaxis and killing rate. We show that active bacterial migration toward tumor hypoxic regions provides optimal infiltration and that high killing rates combined with high chemotactic values provide the smallest tumor volumes at the end of the treatment. We highlight the emergence of steady states in which a small population of bacteria is able to constrain tumor growth. Finally, we show that bacteria treatment works best in the case of tumors with high cellular proliferation and low oxygen consumption.

摘要

肿瘤靶向细菌通过浸润缺氧区域、释放毒性因子和诱导免疫反应来引发抗癌作用。尽管目前的研究主要集中在化学和免疫学方面对细菌治疗机制的影响,但物理效应的影响仍然难以捉摸。在此,我们提出了一个针对无血管肿瘤中细菌抗肿瘤活性的数学模型,该模型考虑了相关的化学-力学效应。我们考虑了细菌的时间依赖性给药,并分析了细菌趋化性和杀伤率的影响。我们表明,细菌向肿瘤缺氧区域的主动迁移可实现最佳浸润,并且高杀伤率与高趋化值相结合可在治疗结束时使肿瘤体积最小。我们强调了稳态的出现,即少量细菌能够抑制肿瘤生长。最后,我们表明细菌治疗在细胞增殖高且耗氧量低的肿瘤中效果最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6c3/7287150/9f1ba093ce9d/fmicb-11-01083-g0001.jpg

相似文献

1
Investigating the Physical Effects in Bacterial Therapies for Avascular Tumors.
Front Microbiol. 2020 Jun 4;11:1083. doi: 10.3389/fmicb.2020.01083. eCollection 2020.
2
Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites.
J Theor Biol. 2004 Feb 21;226(4):377-91. doi: 10.1016/j.jtbi.2003.09.004.
3
Mathematical modeling of PDGF-driven glioma reveals the dynamics of immune cells infiltrating into tumors.
Neoplasia. 2020 Sep;22(9):323-332. doi: 10.1016/j.neo.2020.05.005. Epub 2020 Jun 23.
5
Exploring the role of the immune response in preventing antibiotic resistance.
J Theor Biol. 2009 Feb 21;256(4):655-62. doi: 10.1016/j.jtbi.2008.10.025. Epub 2008 Nov 8.
6
Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.
Immunobiology. 2008;213(9-10):733-49. doi: 10.1016/j.imbio.2008.07.031. Epub 2008 Sep 21.
7
Exploring the function of bacterial chemotaxis.
Curr Opin Microbiol. 2018 Oct;45:16-21. doi: 10.1016/j.mib.2018.01.010. Epub 2018 Feb 13.
8
Mechanistic modeling of light-induced chemotactic infiltration of bacteria into leaf stomata.
PLoS Comput Biol. 2020 May 8;16(5):e1007841. doi: 10.1371/journal.pcbi.1007841. eCollection 2020 May.
9
Modeling Transport of Chemotactic Bacteria in Granular Media with Distributed Contaminant Sources.
Environ Sci Technol. 2017 Dec 19;51(24):14192-14198. doi: 10.1021/acs.est.7b04443. Epub 2017 Dec 5.
10
Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients.
Proc Natl Acad Sci U S A. 2019 May 28;116(22):10792-10797. doi: 10.1073/pnas.1816621116. Epub 2019 May 16.

本文引用的文献

1
Study of oxygen tension variation within live tumor spheroids using microfluidic devices and multi-photon laser scanning microscopy.
RSC Adv. 2018 Aug 28;8(53):30320-30329. doi: 10.1039/c8ra05505j. eCollection 2018 Aug 24.
3
Mathematical Modeling of Bacteria-Enabled Drug Delivery System Penetration into Multicellular Tumor Spheroids.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6162-6165. doi: 10.1109/EMBC.2018.8513596.
4
Tumour-targeting bacteria engineered to fight cancer.
Nat Rev Cancer. 2018 Dec;18(12):727-743. doi: 10.1038/s41568-018-0070-z.
5
Mathematical modelling of a hypoxia-regulated oncolytic virus delivered by tumour-associated macrophages.
J Theor Biol. 2019 Jan 14;461:102-116. doi: 10.1016/j.jtbi.2018.10.044. Epub 2018 Oct 23.
6
The distribution of bacterial doubling times in the wild.
Proc Biol Sci. 2018 Jun 13;285(1880). doi: 10.1098/rspb.2018.0789.
7
Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions.
Front Microbiol. 2018 Jan 23;9:16. doi: 10.3389/fmicb.2018.00016. eCollection 2018.
8
Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.
J Elast. 2017 Dec;129(1-2):107-124. doi: 10.1007/s10659-016-9619-9. Epub 2017 Jan 9.
9
Molecular mechanisms of hypoxia in cancer.
Clin Transl Imaging. 2017;5(3):225-253. doi: 10.1007/s40336-017-0231-1. Epub 2017 May 11.
10
Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model.
J Theor Biol. 2017 May 21;421:179-188. doi: 10.1016/j.jtbi.2017.03.027. Epub 2017 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验