Suppr超能文献

用于多发性硬化症的脑结构分割的全自动流水线。

A fully automated pipeline for brain structure segmentation in multiple sclerosis.

机构信息

Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain; Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, University of Girona, 17003 Girona, Spain.

出版信息

Neuroimage Clin. 2020;27:102306. doi: 10.1016/j.nicl.2020.102306. Epub 2020 Jun 4.

Abstract

Accurate volume measurements of the brain structures are important for treatment evaluation and disease follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure segmentation strategies have been proposed in recent years. However, most of these strategies tend to be affected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmentation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely automated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas selection, masked registration and label fusion, and combine them with an automated lesion segmentation method of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmentation result, analyzing the output of the proposed pipeline when used in combination with manually and automatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of the original label fusion strategies when combined with the well-established pre-processing step of lesion filling. The experiments performed show that, when the original methods are used to segment the lesion-filled images, significant structure volume differences are observed in a comparison between manually and automatically segmented lesion masks. The results indicate a mean volume decrease of 1.13%±1.93 in the cerebrospinal fluid, and a mean volume increase of 0.13%±0.14 and 0.05%±0.08 in the cerebral white matter and cerebellar gray matter, respectively. On the other hand, no significant volume differences were found when the proposed automated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion mask used.

摘要

准确测量脑结构的体积对于多发性硬化症(MS)患者的治疗评估和疾病随访非常重要。为了获得可重复的测量结果,并避免手动勾画引入的组内/组间变异性,近年来提出了几种自动化脑结构分割策略。然而,大多数这些策略往往受到异常 MS 病变强度的影响,从而破坏结构分割的结果。为了解决这个问题,我们最近重新制定了两种最先进的标签融合策略,提高了它们在病变区域的分割性能。在这里,我们将这些重新制定的策略集成到一个完全自动化的管道中,该管道包括预处理(不均匀性校正和强度归一化)、图谱选择、掩模配准和标签融合,并将其与一种最先进的自动病变分割方法相结合。我们研究了自动化病变掩模获取对结构分割结果的影响,分析了在结合手动和自动分割病变掩模使用时,所提出的管道的输出。我们进一步分析了当与病变填充的既定预处理步骤结合使用时,这些掩模对原始标签融合策略分割结果的影响。实验结果表明,当使用原始方法分割病变填充图像时,在手动和自动分割病变掩模之间进行比较,会观察到显著的结构体积差异。结果表明,在脑脊液中体积平均减少 1.13%±1.93,在大脑白质和小脑灰质中体积分别平均增加 0.13%±0.14 和 0.05%±0.08。另一方面,当使用提出的自动化管道进行分割时,没有发现显著的体积差异,这证明了它对使用的病变掩模变化的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c791/7322098/4452e0c5b903/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验