Suppr超能文献

通过自动病变分割和填充对多发性硬化症中的脑组织体积进行量化。

Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.

作者信息

Valverde Sergi, Oliver Arnau, Roura Eloy, Pareto Deborah, Vilanova Joan C, Ramió-Torrentà Lluís, Sastre-Garriga Jaume, Montalban Xavier, Rovira Àlex, Lladó Xavier

机构信息

Dept. of Computer Architecture and Technology, University of Girona, Spain.

Magnetic Resonance Unit, Dept. of Radiology, Vall d'Hebron University Hospital, Spain Architecture and Technology, University of Girona, Spain.

出版信息

Neuroimage Clin. 2015 Oct 28;9:640-7. doi: 10.1016/j.nicl.2015.10.012. eCollection 2015.

Abstract

Lesion filling has been successfully applied to reduce the effect of hypo-intense T1-w Multiple Sclerosis (MS) lesions on automatic brain tissue segmentation. However, a study of fully automated pipelines incorporating lesion segmentation and lesion filling on tissue volume analysis has not yet been performed. Here, we analyzed the % of error introduced by automating the lesion segmentation and filling processes in the tissue segmentation of 70 clinically isolated syndrome patient images. First of all, images were processed using the LST and SLS toolkits with different pipeline combinations that differed in either automated or manual lesion segmentation, and lesion filling or masking out lesions. Then, images processed following each of the pipelines were segmented into gray matter (GM) and white matter (WM) using SPM8, and compared with the same images where expert lesion annotations were filled before segmentation. Our results showed that fully automated lesion segmentation and filling pipelines reduced significantly the % of error in GM and WM volume on images of MS patients, and performed similarly to the images where expert lesion annotations were masked before segmentation. In all the pipelines, the amount of misclassified lesion voxels was the main cause in the observed error in GM and WM volume. However, the % of error was significantly lower when automatically estimated lesions were filled and not masked before segmentation. These results are relevant and suggest that LST and SLS toolboxes allow the performance of accurate brain tissue volume measurements without any kind of manual intervention, which can be convenient not only in terms of time and economic costs, but also to avoid the inherent intra/inter variability between manual annotations.

摘要

病变填充已成功应用于减少T1加权低信号多发性硬化(MS)病变对脑组织自动分割的影响。然而,尚未对结合病变分割和病变填充的全自动流程在组织体积分析方面进行研究。在此,我们分析了在70例临床孤立综合征患者图像的组织分割中,通过自动化病变分割和填充过程引入的误差百分比。首先,使用LST和SLS工具包,采用不同的流程组合对图像进行处理,这些组合在自动或手动病变分割、病变填充或病变掩盖方面存在差异。然后,使用SPM8将按照每个流程处理后的图像分割为灰质(GM)和白质(WM),并与在分割前填充了专家病变注释的相同图像进行比较。我们的结果表明,全自动病变分割和填充流程显著降低了MS患者图像中GM和WM体积的误差百分比,并且与在分割前掩盖专家病变注释的图像表现相似。在所有流程中,误分类病变体素的数量是观察到的GM和WM体积误差的主要原因。然而,当自动估计的病变在分割前被填充而不是被掩盖时,误差百分比显著更低。这些结果具有相关性,表明LST和SLS工具箱无需任何手动干预即可进行准确的脑组织体积测量,这不仅在时间和经济成本方面很方便,而且还能避免手动注释之间固有的内部/相互变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c1/4644250/4240fa7c071c/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验