Suppr超能文献

患者安全与质量改进:医疗机器学习偏倚监管方法的伦理原则

Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning.

机构信息

Bioethics Department, The Hospital for Sick Children, Toronto, Ontario, Canada.

Vector Institute, Toronto, Ontario, Canada.

出版信息

J Am Med Inform Assoc. 2020 Dec 9;27(12):2024-2027. doi: 10.1093/jamia/ocaa085.

Abstract

Accumulating evidence demonstrates the impact of bias that reflects social inequality on the performance of machine learning (ML) models in health care. Given their intended placement within healthcare decision making more broadly, ML tools require attention to adequately quantify the impact of bias and reduce its potential to exacerbate inequalities. We suggest that taking a patient safety and quality improvement approach to bias can support the quantification of bias-related effects on ML. Drawing from the ethical principles underpinning these approaches, we argue that patient safety and quality improvement lenses support the quantification of relevant performance metrics, in order to minimize harm while promoting accountability, justice, and transparency. We identify specific methods for operationalizing these principles with the goal of attending to bias to support better decision making in light of controllable and uncontrollable factors.

摘要

越来越多的证据表明,反映社会不平等的偏见会对医疗保健中的机器学习 (ML) 模型的性能产生影响。鉴于它们更广泛地应用于医疗保健决策,因此需要关注 ML 工具,以充分量化偏差的影响,并降低其加剧不平等的潜力。我们认为,采用患者安全和质量改进方法来处理偏差,可以支持对 ML 中与偏差相关的影响进行量化。我们从这些方法所依据的伦理原则出发,认为患者安全和质量改进视角支持相关绩效指标的量化,以便在促进问责制、公正性和透明度的同时,将伤害降到最低。我们确定了具体的方法来实施这些原则,目的是解决偏差问题,以便根据可控和不可控因素做出更好的决策。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Ethics and governance of trustworthy medical artificial intelligence.可信医疗人工智能的伦理与治理。
BMC Med Inform Decis Mak. 2023 Jan 13;23(1):7. doi: 10.1186/s12911-023-02103-9.
8
Artificial intelligence, bias and clinical safety.人工智能、偏差与临床安全。
BMJ Qual Saf. 2019 Mar;28(3):231-237. doi: 10.1136/bmjqs-2018-008370. Epub 2019 Jan 12.
10
Defining AMIA's artificial intelligence principles.定义 AMIA 的人工智能原则。
J Am Med Inform Assoc. 2022 Mar 15;29(4):585-591. doi: 10.1093/jamia/ocac006.

引用本文的文献

1
Artificial Intelligence in Obsessive-Compulsive Disorder: A Systematic Review.强迫症中的人工智能:一项系统综述。
Curr Treat Options Psychiatry. 2025;12(1):23. doi: 10.1007/s40501-025-00359-8. Epub 2025 Jun 14.
8
AI in Radiology: Navigating Medical Responsibility.放射学中的人工智能:应对医疗责任。
Diagnostics (Basel). 2024 Jul 12;14(14):1506. doi: 10.3390/diagnostics14141506.

本文引用的文献

6
Assessing risk, automating racism.评估风险,使种族主义自动化。
Science. 2019 Oct 25;366(6464):421-422. doi: 10.1126/science.aaz3873.
10
Machine Learning and Health Care Disparities in Dermatology.皮肤病学中的机器学习与医疗保健差异
JAMA Dermatol. 2018 Nov 1;154(11):1247-1248. doi: 10.1001/jamadermatol.2018.2348.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验