Suppr超能文献

定义 AMIA 的人工智能原则。

Defining AMIA's artificial intelligence principles.

机构信息

NorthShore University HealthSystem, Research Institute, Evanston, Illinois, USA.

Center for Computational Health, IBM T. J. Watson Research Center, Yorktown Heights, New York, USA.

出版信息

J Am Med Inform Assoc. 2022 Mar 15;29(4):585-591. doi: 10.1093/jamia/ocac006.

Abstract

Recent advances in the science and technology of artificial intelligence (AI) and growing numbers of deployed AI systems in healthcare and other services have called attention to the need for ethical principles and governance. We define and provide a rationale for principles that should guide the commission, creation, implementation, maintenance, and retirement of AI systems as a foundation for governance throughout the lifecycle. Some principles are derived from the familiar requirements of practice and research in medicine and healthcare: beneficence, nonmaleficence, autonomy, and justice come first. A set of principles follow from the creation and engineering of AI systems: explainability of the technology in plain terms; interpretability, that is, plausible reasoning for decisions; fairness and absence of bias; dependability, including "safe failure"; provision of an audit trail for decisions; and active management of the knowledge base to remain up to date and sensitive to any changes in the environment. In organizational terms, the principles require benevolence-aiming to do good through the use of AI; transparency, ensuring that all assumptions and potential conflicts of interest are declared; and accountability, including active oversight of AI systems and management of any risks that may arise. Particular attention is drawn to the case of vulnerable populations, where extreme care must be exercised. Finally, the principles emphasize the need for user education at all levels of engagement with AI and for continuing research into AI and its biomedical and healthcare applications.

摘要

人工智能(AI)科学技术的最新进展以及越来越多的 AI 系统在医疗保健和其他服务领域的部署,引起了人们对伦理原则和治理的关注。我们定义并提供了一些原则的基本原理,这些原则应该作为整个生命周期内 AI 系统治理的基础,指导 AI 系统的委托、创建、实施、维护和退役。一些原则源自医学和医疗保健实践和研究中的熟悉要求:首先是善行、不伤害、自主性和正义。从 AI 系统的创建和工程中可以得出一系列原则:用通俗易懂的语言解释技术;可解释性,即对决策进行合理推理;公平性和无偏见;可靠性,包括“安全故障”;提供决策的审计跟踪;以及主动管理知识库,以保持最新并对环境中的任何变化保持敏感。从组织的角度来看,这些原则要求仁慈——通过使用 AI 来做好事;透明度,确保声明所有假设和潜在的利益冲突;问责制,包括对 AI 系统的积极监督和管理可能出现的任何风险。特别提请注意弱势群体的情况,在这种情况下,必须格外小心。最后,这些原则强调了在与 AI 交互的各个层面上对用户进行教育的必要性,以及对 AI 及其生物医学和医疗保健应用的持续研究的必要性。

相似文献

1
Defining AMIA's artificial intelligence principles.定义 AMIA 的人工智能原则。
J Am Med Inform Assoc. 2022 Mar 15;29(4):585-591. doi: 10.1093/jamia/ocac006.
3
Ethical and Legal Challenges of Artificial Intelligence in Nuclear Medicine.人工智能在核医学中的伦理和法律挑战。
Semin Nucl Med. 2021 Mar;51(2):120-125. doi: 10.1053/j.semnuclmed.2020.08.001. Epub 2020 Sep 11.
4
Call for the responsible artificial intelligence in the healthcare.呼吁在医疗保健中使用负责任的人工智能。
BMJ Health Care Inform. 2023 Dec 21;30(1):e100920. doi: 10.1136/bmjhci-2023-100920.
8
Foundational Considerations for Artificial Intelligence Using Ophthalmic Images.利用眼科图像的人工智能基础考量。
Ophthalmology. 2022 Feb;129(2):e14-e32. doi: 10.1016/j.ophtha.2021.08.023. Epub 2021 Aug 31.
10
Ethics and governance of trustworthy medical artificial intelligence.可信医疗人工智能的伦理与治理。
BMC Med Inform Decis Mak. 2023 Jan 13;23(1):7. doi: 10.1186/s12911-023-02103-9.

引用本文的文献

2
Responsible Artificial Intelligence governance in oncology.肿瘤学中的负责任人工智能治理
NPJ Digit Med. 2025 Jul 4;8(1):407. doi: 10.1038/s41746-025-01794-w.
4
Clinical insights: A comprehensive review of language models in medicine.临床见解:医学领域语言模型的全面综述
PLOS Digit Health. 2025 May 8;4(5):e0000800. doi: 10.1371/journal.pdig.0000800. eCollection 2025 May.
6
Clinical Research Informatics: a Decade-in-Review.临床研究信息学:十年回顾
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.

本文引用的文献

5
Bad machines corrupt good morals.坏机器会腐蚀良好的道德。
Nat Hum Behav. 2021 Jun;5(6):679-685. doi: 10.1038/s41562-021-01128-2. Epub 2021 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验